Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37252823

ABSTRACT

MOTIVATION: Bone marrow (BM) examination is one of the most important indicators in diagnosing hematologic disorders and is typically performed under the microscope via oil-immersion objective lens with a total 100× objective magnification. On the other hand, mitotic detection and identification is critical not only for accurate cancer diagnosis and grading but also for predicting therapy success and survival. Fully automated BM examination and mitotic figure examination from whole-slide images is highly demanded but challenging and poorly explored. First, the complexity and poor reproducibility of microscopic image examination are due to the cell type diversity, delicate intralineage discrepancy within the multitype cell maturation process, cells overlapping, lipid interference and stain variation. Second, manual annotation on whole-slide images is tedious, laborious and subject to intraobserver variability, which causes the supervised information restricted to limited, easily identifiable and scattered cells annotated by humans. Third, when the training data are sparsely labeled, many unlabeled objects of interest are wrongly defined as background, which severely confuses AI learners. RESULTS: This article presents an efficient and fully automatic CW-Net approach to address the three issues mentioned above and demonstrates its superior performance on both BM examination and mitotic figure examination. The experimental results demonstrate the robustness and generalizability of the proposed CW-Net on a large BM WSI dataset with 16 456 annotated cells of 19 BM cell types and a large-scale WSI dataset for mitotic figure assessment with 262 481 annotated cells of five cell types. AVAILABILITY AND IMPLEMENTATION: An online web-based system of the proposed method has been created for demonstration (see https://youtu.be/MRMR25Mls1A).


Subject(s)
Image Processing, Computer-Assisted , Microscopy , Humans , Bone Marrow Examination , Reproducibility of Results , Image Processing, Computer-Assisted/methods
3.
Med Image Anal ; 75: 102270, 2022 01.
Article in English | MEDLINE | ID: mdl-34710655

ABSTRACT

Bone marrow (BM) examination is an essential step in both diagnosing and managing numerous hematologic disorders. BM nucleated differential count (NDC) analysis, as part of BM examination, holds the most fundamental and crucial information. However, there are many challenges to perform automated BM NDC analysis on whole-slide images (WSIs), including large dimensions of data to process, complicated cell types with subtle differences. To the authors best knowledge, this is the first study on fully automatic BM NDC using WSIs with 40x objective magnification, which can replace traditional manual counting relying on light microscopy via oil-immersion 100x objective lens with a total 1000x magnification. In this study, we develop an efficient and fully automatic hierarchical deep learning framework for BM NDC WSI analysis in seconds. The proposed hierarchical framework consists of (1) a deep learning model for rapid localization of BM particles and cellular trails generating regions of interest (ROI) for further analysis, (2) a patch-based deep learning model for cell identification of 16 cell types, including megakaryocytes, mitotic cells, and four stages of erythroblasts which have not been demonstrated in previous studies before, and (3) a fast stitching model for integrating patch-based results and producing final outputs. In evaluation, the proposed method is firstly tested on a dataset with a total of 12,426 annotated cells using cross validation, achieving high recall and accuracy of 0.905 ± 0.078 and 0.989 ± 0.006, respectively, and taking only 44 seconds to perform BM NDC analysis for a WSI. To further examine the generalizability of our model, we conduct an evaluation on the second independent dataset with a total of 3005 cells, and the results show that the proposed method also obtains high recall and accuracy of 0.842 and 0.988, respectively. In comparison with the existing small-image-based benchmark methods, the proposed method demonstrates superior performance in recall, accuracy and computational time.


Subject(s)
Deep Learning , Bone Marrow Cells , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...