Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 14(2): 435-464, 2022.
Article in English | MEDLINE | ID: mdl-35569814

ABSTRACT

BACKGROUND AND AIMS: Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS: We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS: In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS: It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Colitis/chemically induced , Colitis/drug therapy , Disease Models, Animal , Inflammation , Inflammatory Bowel Diseases/pathology , Mice , Regeneration , Wnt Signaling Pathway
2.
PLoS Pathog ; 15(6): e1007716, 2019 06.
Article in English | MEDLINE | ID: mdl-31170257

ABSTRACT

There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the ß-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Epitopes , Immunoglobulin Heavy Chains , Immunoglobulin Light Chains , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Dengue Vaccines/genetics , Dengue Vaccines/immunology , Dengue Virus/immunology , Epitopes/genetics , Epitopes/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Macaca mulatta
3.
Article in English | MEDLINE | ID: mdl-29038280

ABSTRACT

The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.


Subject(s)
Antibodies, Bispecific/pharmacology , CD3 Complex/immunology , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Adoptive Transfer , Antibodies, Monoclonal, Humanized , Antibodies, Viral , Antibody Specificity , Cell Line , Cell Survival/drug effects , Humans , Tumor Necrosis Factor Receptor Superfamily, Member 7
4.
Oncotarget ; 8(43): 73654-73669, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29088734

ABSTRACT

Human cytomegalovirus (HCMV) can cause life-threatening infection in immunosuppressed patients, and in utero infection that may lead to birth defects. No vaccine is currently available. HCMV infection in healthy subjects is generally asymptomatic, and virus persists as latent infection for life. Host immunity is effective against reactivation and super-infection with another strain. Thus, vaccine candidates able to elicit immune responses similar to those of natural infection may confer protection. Since neutralization is essential for prophylactic vaccines, it is important to understand how antiviral antibodies are developed in natural infection. We hypothesized that the developmental path of antibodies in seropositive subjects could be unveiled by interrogating host B-cell repertoires using unique genetic signature sequences of mAbs. Towards this goal, we isolated 56 mAbs from three healthy donors with different neutralizing titers. Antibodies specific to the gH/gL/pUL128/130/131 pentameric complex were more potent in neutralization than those to gB. Using these mAbs as probes, patterns of extended lineage development for B-cells and evidence of active antibody maturation were revealed in two donors with higher neutralizing titers. Importantly, such patterns were limited to mAbs specific to the pentamer, but none to gB. Thus, memory B-cells with antiviral function such as neutralization were active during latent infection in the two donors, and this activity was responsible for their higher neutralizing titers. Our results indicated that memory B-cells of neutralizing capacity could be frequently mobilized in host, probably responding to silent viral episodes, further suggesting that neutralizing antibodies could play a role in control of recurrent infection.

5.
MAbs ; 7(4): 707-18, 2015.
Article in English | MEDLINE | ID: mdl-25996084

ABSTRACT

Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Antibody-Producing Cells/immunology , Dengue Vaccines/immunology , Dengue Virus/immunology , Immunoglobulin Variable Region , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Macaca mulatta , Sequence Analysis, Protein
6.
Breast Cancer Res ; 16(2): R33, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24693969

ABSTRACT

INTRODUCTION: Trastuzumab has been widely used for the treatment of human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer for more than a decade. However, reports on the involvement of HER2 downregulation in trastuzumab's mechanism of action are inconsistent. The aim of this study is to investigate if the dependence of trastuzumab-mediated cancer cell HER2 downregulation on immune effector cells represents a novel mechanism of action for trastuzumab. METHODS: HER2 expression was evaluated by Western blotting, flow cytometry, and real-time polymerase chain reaction (PCR) in cell lysates from co-cultures of multiple cancer cell lines with peripheral blood mononuclear cells (PBMCs) in the presence or absence of trastuzumab. The engagement of immune cells by trastuzumab through Fc gamma receptors (FcγRs) was tested using three trastuzumab variants with compromised or no Fc (fragment crystallizable) functions and FcγRs blocking experiments. The engagement of immune cells by trastuzumab in HER2 downregulation was also evaluated in in vivo mouse xenograft tumor models. RESULTS: HER2 downregulation of cancer cells by trastuzumab occurred only when trastuzumab was actively engaged with immune cells and cancer cells, as demonstrated consistently in co-cultures of cancer cell lines with PBMCs and in vivo mouse xenograft tumor models. We further demonstrated that HER2 downregulation in cancer cells by immune-cell-engaged trastuzumab was at the transcriptional level, not through the HER2 degradation pathway. Activation of signal transducer and activator of transcription 1 (STAT1) in cancer cells by the increased interferon gamma (IFN-γ) production in immune cells played an important role in downregulating HER2 in cancer cells upon engagement of immune cells by trastuzumab. Furthermore, HER2 downregulation in cancer cells induced by trastuzumab engagement of immune cells was correlated with the antibody's antitumor efficacy in vivo. CONCLUSIONS: This study reveals that engagement of immune effector cells by trastuzumab induces HER2 downregulation in HER2-expressing cancer cells, which represents a new function of immune cells in trastuzumab-mediated antitumor efficacy and serves as a novel mechanism of action for trastuzumab. Our results imply that HER2 downregulation in cancer cells treated by trastuzumab may predict active engagement of immune effector cells in tumor microenvironment.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/drug therapy , Down-Regulation/drug effects , Immune System/drug effects , Receptor, ErbB-2/metabolism , STAT1 Transcription Factor/metabolism , Animals , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Female , Humans , Immune System/cytology , Immune System/metabolism , Immunohistochemistry , Interferon-gamma/genetics , Interferon-gamma/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , MCF-7 Cells , Mice, Nude , Receptor, ErbB-2/genetics , Receptors, IgG/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trastuzumab , Tumor Burden/drug effects , Tumor Burden/genetics , Xenograft Model Antitumor Assays
7.
Biomaterials ; 35(18): 4940-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24661550

ABSTRACT

Human adipose tissue extracellular matrix, derived through decellularization processing, has been shown to provide a biomimetic microenvironment for adipose tissue regeneration. This study reports the use of human adipose tissue-derived extracellular matrix (hDAM) scaffolds as a three-dimensional cell culturing system for the investigation of breast cancer growth and drug treatments. The hDAM scaffolds have similar extracellular matrix composition to the microenvironment of breast tissues. Breast cancer cells were cultured in hDAM scaffolds, and cell proliferation, migration, morphology, and drug responses were investigated. The growth profiles of multiple breast cancer cell lines cultured in hDAM scaffolds differed from the growth of those cultured on two-dimensional surfaces and more closely resembled the growth of xenografts. hDAM-cultured breast cancer cells also differed from those cultured on two-dimensional surfaces in terms of cell morphology, migration, expression of adhesion molecules, and sensitivity to drug treatment. Our results demonstrated that the hDAM system provides breast cancer cells with a biomimetic microenvironment in vitro that more closely mimics the in vivo microenvironment than existing two-dimensional and Matrigel three-dimensional cultures do, and thus can provide vital information for the characterization of cancer cells and screening of cancer therapeutics.


Subject(s)
Adipose Tissue/physiology , Breast Neoplasms/drug therapy , Tissue Scaffolds , Animals , Antineoplastic Agents/pharmacology , Biomimetics , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Extracellular Matrix/metabolism , Female , Humans , Immunohistochemistry , Lapatinib , MCF-7 Cells , Mice, Inbred BALB C , Mice, Nude , Microscopy, Electron, Scanning , Neoplasm Transplantation , Quinazolines/pharmacology , Regeneration , Tissue Engineering
8.
Proc Natl Acad Sci U S A ; 110(51): E4997-5005, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297878

ABSTRACT

Human cytomegalovirus (HCMV) can cause serious morbidity/mortality in transplant patients, and congenital HCMV infection can lead to birth defects. Developing an effective HCMV vaccine is a high medical priority. One of the challenges to the efforts has been our limited understanding of the viral antigens important for protective antibodies. Receptor-mediated viral entry to endothelial/epithelial cells requires a glycoprotein H (gH) complex comprising five viral proteins (gH, gL, UL128, UL130, and UL131). This gH complex is notably missing from HCMV laboratory strains as well as HCMV vaccines previously evaluated in the clinic. To support a unique vaccine concept based on the pentameric gH complex, we established a panel of 45 monoclonal antibodies (mAbs) from a rabbit immunized with an experimental vaccine virus in which the expression of the pentameric gH complex was restored. Over one-half (25 of 45) of the mAbs have neutralizing activity. Interestingly, affinity for an antibody to bind virions was not correlated with its ability to neutralize the virus. Genetic analysis of the 45 mAbs based on their heavy- and light-chain sequences identified at least 26 B-cell linage groups characterized by distinct binding or neutralizing properties. Moreover, neutralizing antibodies possessed longer complementarity-determining region 3 for both heavy and light chains than those with no neutralizing activity. Importantly, potent neutralizing mAbs reacted to the pentameric gH complex but not to gB. Thus, the pentameric gH complex is the primary target for antiviral antibodies by vaccination.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Multiprotein Complexes/immunology , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/genetics , Female , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Multiprotein Complexes/genetics , Rabbits , Viral Envelope Proteins/genetics
9.
Nat Commun ; 4: 2369, 2013.
Article in English | MEDLINE | ID: mdl-24022374

ABSTRACT

Preventing and treating influenza virus infection remain a challenge because of incomplete understanding of the host-pathogen interactions, limited therapeutics and lack of a universal vaccine. So far, methods for monitoring the course of infection with influenza virus in real time in living animals are lacking. Here we report the visualization of influenza viral infection in living mice using an engineered replication-competent influenza A virus carrying luciferase reporter gene. After intranasal inoculation, bioluminescence can be detected in the chest and nasopharyngeal passage of living mice. The intensity of bioluminescence in the chest correlates with the dosage of infection and the viral load in the lung. Bioluminescence in the chest of infected mice diminishes on antiviral treatment. This work provides a novel approach that enables real-time study of influenza virus infection and effects of antiviral therapeutics in living animals.


Subject(s)
Influenza A virus/physiology , Orthomyxoviridae Infections/virology , Administration, Intranasal , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Body Weight , Chickens , Computer Systems , Dogs , Female , Genes, Reporter , HEK293 Cells , Humans , Imaging, Three-Dimensional , Influenza A virus/pathogenicity , Luciferases/metabolism , Luminescent Measurements , Lung/pathology , Lung/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/pathology , Virus Replication
10.
PLoS One ; 8(6): e66276, 2013.
Article in English | MEDLINE | ID: mdl-23824680

ABSTRACT

BACKGROUND: The outbreaks of emerging infectious diseases caused by pathogens such as SARS coronavirus, H5N1, H1N1, and recently H7N9 influenza viruses, have been associated with significant mortality and morbidity in humans. Neutralizing antibodies from individuals who have recovered from an infection confer therapeutic protection to others infected with the same pathogen. However, survivors may not always be available for providing plasma or for the cloning of monoclonal antibodies (mAbs). METHODOLOGY/PRINCIPAL FINDINGS: The genome and the immunoglobulin genes in rhesus macaques and humans are highly homologous; therefore, we investigated whether neutralizing mAbs that are highly homologous to those of humans (human-like) could be generated. Using the H5N1 influenza virus as a model, we first immunized rhesus macaques with recombinant adenoviruses carrying a synthetic gene encoding hemagglutinin (HA). Following screening an antibody phage display library derived from the B cells of immunized monkeys, we cloned selected macaque immunoglobulin heavy chain and light chain variable regions into the human IgG constant region, which generated human-macaque chimeric mAbs exhibiting over 97% homology to human antibodies. Selected mAbs demonstrated potent neutralizing activities against three clades (0, 1, 2) of the H5N1 influenza viruses. The in vivo protection experiments demonstrated that the mAbs effectively protected the mice even when administered up to 3 days after infection with H5N1 influenza virus. In particular, mAb 4E6 demonstrated sub-picomolar binding affinity to HA and superior in vivo protection efficacy without the loss of body weight and obvious lung damage. The analysis of the 4E6 escape mutants demonstrated that the 4E6 antibody bound to a conserved epitope region containing two amino acids on the globular head of HA. CONCLUSIONS/SIGNIFICANCE: Our study demonstrated the generation of neutralizing mAbs for potential application in humans in urgent preparedness against outbreaks of new influenza infections or other virulent infectious diseases.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , Communicable Diseases, Emerging/therapy , Disease Outbreaks , Influenza, Human/therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Macaca mulatta , Mice
11.
Hum Vaccin Immunother ; 8(2): 252-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22426370

ABSTRACT

H5N1 influenza candidate vaccine viruses were developed using the "6+2" approach. The hemagglutinin (HA) and neuraminidase (NA) genes were derived from the popular H5N1 virus and the remaining six internal segments were derived from the A/Puerto Rico/8/34 strain (H1N1, PR8). However, some of these candidate strains have been reported to produce relatively low yields in vaccine manufacture. In this study, we found that the NA vRNA of the A/Vietnam/1194/2004 strain (H5N1, VN1194) was poorly packaged into recombinant viruses with a backbone of PR8 genes, which resulted in the formation of defective virions that did not include the NA vRNA in the genome. Using recombinant DNA techniques, we constructed a chimeric NA gene with the coding region of VN1194 NA flanked by the packaging signal sequence of the PR8 NA gene (41 bp form the 3' end of the vRNA and 67 bp from the 5' end). The packaging of the NA vRNA was restored to normal levels in the recombinant viruses containing the chimeric NA gene. Recombinant viruses containing the chimeric NA replicated much better in chicken embryonated eggs than viruses with the wild-type NA from VN1194. These findings suggest a novel strategy to improve in ovo growth of vaccine strains and to increase the number of vaccine doses available to save people if a pandemic were to occur.


Subject(s)
Influenza A Virus, H5N1 Subtype/growth & development , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Neuraminidase/genetics , Viral Proteins/genetics , Animals , Cell Line , Chick Embryo , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Neuraminidase/immunology , RNA, Viral/genetics , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Recombinant Fusion Proteins , Vaccines, Synthetic/immunology , Viral Proteins/immunology , Virus Assembly , Virus Cultivation , Virus Replication
12.
PLoS One ; 6(12): e28309, 2011.
Article in English | MEDLINE | ID: mdl-22164266

ABSTRACT

Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH) libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.


Subject(s)
Antibodies/chemistry , Influenza A virus/immunology , Viral Matrix Proteins/chemistry , Animals , Antibody Specificity , Camelus , Cell Line , Chromatography/methods , Dogs , Enzyme-Linked Immunosorbent Assay/methods , Female , Gene Library , HEK293 Cells , Humans , Ion Channels/chemistry , Kinetics , Mice , Mice, Inbred BALB C , Neutralization Tests , Oligonucleotides/chemistry , Polymerase Chain Reaction/methods , Protein Binding , Protein Structure, Tertiary , Surface Plasmon Resonance
13.
Virus Res ; 155(1): 156-62, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20883733

ABSTRACT

Recent outbreaks of highly pathogenic avian influenza (HPAI) H5N1 viruses in poultry and their subsequent transmission to humans have highlighted an urgent need to develop preventive vaccines in the event of a pandemic. In this paper we constructed recombinant adenovirus (rAd)-vectored influenza vaccines expressing different forms of H5 hemagglutinin (HA) from the A/Vietnam/1194/04 (VN/1194/04) virus, a wild-type HA, a sequence codon-optimized HA and a transmembrane (TM) domain-truncated HA. Compared to the rAd vectors expressing the wild-type HA (rAd-04wtHA) and the TM-truncated form of HA (rAd-04optHA-dTM), the rAd vectored vaccine with the sequence codon-optimized HA (rAd-04optHA) showed a tendency to induce much higher hemagglutinin inhibition (HI) antibody titers in mice immunized with a prime-boost vaccine. Furthermore, administration of the rAd-04optHA vaccine to mice could elicit cross-reactive immune responses against the antigenically distinct HK/482/97 virus. Additionally, we constructed another vector containing the codon-optimized HA of the A/Hong Kong/482/97 (HK/482/97) virus. Administration of a bivalent immunization formulation including the rAd-04optHA and rAd-97optHA vaccines to mice induced a stronger immune response against HK/482/97 virus than the monovalent formulation. Taken together, these findings may have some implications for the development of rAd-vectored vaccines in the event of the pandemic spread of HPAI.


Subject(s)
Adenoviridae/genetics , Drug Carriers , Genetic Vectors , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Influenza Vaccines/immunology , Animals , Antibodies, Viral/blood , Codon , Cross Reactions , Female , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunization, Secondary/methods , Influenza A virus/genetics , Influenza Vaccines/genetics , Mice , Mice, Inbred BALB C , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...