Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 65(35): 7661-7668, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28813155

ABSTRACT

The degradation issue of sulfonylurea (SU) has become one of the biggest challenges that hamper the development and application of this class of herbicides, especially in the alkaline soils of northern China. On the basis of the previous discovery that some substituents on the fifth position of the benzene ring in Chlorsulfuron could hasten its degradation rate, apparently in acidic soil, this work on Metsulfuron-methyl showed more convincing results. Two novel compounds (I-1 and I-2) were designed and synthesized, and they still retained potent herbicidal activity in tests against both dicotyledons and monocotyledons. The half-lives of degradation (DT50) assay revealed that I-1 showed an accelerated degradation rate in acidic soil (pH 5.59). Moreover, we delighted to find that the degradation rate of I-1 was 9-10-fold faster than that of Metsulfuron-methyl and Chlorsulfuron when in alkaline soil (pH 8.46), which has more practical value. This research suggests that a modified structure that has potent herbicidal activity as well as accelerated degradation rate could be realized and this approach may provide a way to improve the residue problem of SUs in farmlands with alkaline soil.


Subject(s)
Herbicides/chemistry , Soil Pollutants/chemistry , Sulfonylurea Compounds/chemistry , China , Kinetics , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...