Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36987105

ABSTRACT

The application of carbon-based nanomaterials (CBNMs) in plant science and agriculture is a very recent development. Many studies have been conducted to understand the interactions between CBNMs and plant responses, but how fullerol regulates wheat subjected to drought stress is still unclear. In this study, seeds of two wheat cultivars (CW131 and BM1) were pre-treated with different concentrations of fullerol to investigate seed germination and drought tolerance. Our results indicate that the application of fullerol at certain concentrations (25-200 mg L-1) significantly promoted seed germination in two wheat cultivars under drought stress; the most significant effective concentration was 50 mg L-1, which increased the final germination percentage by 13.7% and 9.7% compared to drought stress alone, respectively. Wheat plants exposed to drought stress induced a significant decrease in plant height and root growth, while reactive oxygen species (ROS) and malondialdehyde (MDA) contents increased significantly. Interestingly, wheat seedlings of both cultivars grown from 50 and 100 mg L-1 fullerol-treated seeds were promoted in seedling growth under water stress, which was associated with lower ROS and MDA contents, as well as higher antioxidant enzyme activities. In addition, modern cultivars (CW131) had better drought adaptation than old cultivars (BM1) did, while the effect of fullerol on wheat had no significant difference between the two cultivars. The study demonstrated the possibility of improving seed germination, seedling growth and antioxidant enzyme activities by using appropriate concentrations of fullerol under drought stress. The results are significant for understanding the application of fullerol in agriculture under stressful conditions.

2.
Colloids Surf B Biointerfaces ; 189: 110886, 2020 May.
Article in English | MEDLINE | ID: mdl-32109824

ABSTRACT

A microemulsion system based on ionic liquid (IL) and deep eutectic compound was proposed to improve the transdermal delivery of artemisinin. Deep eutectic lidocaine ibuprofen (Lid·Ibu) was selected as the oil phase, and the imidazolium ionic liquid, 1-hydroxyethyl-3-methylimidazolium chloride ([HOEmim]Cl), was incorporated into the aqueous phase as a transdermal enhancer. The ingredients for the microemulsion in this study were selected, and their ratios were optimized. The optimal microemulsion carrier was composed of 45 wt% of water phase, 45 wt% surfactant phase (containing Tween-80, Span-20, and ethanol (co-surfactant) with the weight ratio of 1:1:1), and 10 wt% Lid·Ibu as the oil phase with artemisinin loading of 1.0 wt% (all the ratios were based on the total weight of microemulsion). Physical properties of this microemulsion, including particle size (41.95 ± 0.85 nm), viscosity (26.65 ± 0.13 mPa·s) and density (1.02 g/cm3), were measured. In-vitro transdermal assay showed a remarkable enhancement of artemisinin transport through the skin, with the permeation flux being 3-fold of the value for isopropyl myristate system in 6 h. The impact of IL-based microemulsion (ILME) on stratum corneum (SC) was investigated by DSC, ATR-FTIR and AFM, which unveiled that the ILME possesses the ability of reducing the SC barrier by disrupting the regular arrangement of keratin, resulting in enhancement of transdermal delivery of artemisinin. This current work suggested that the microemulsion proposed here had an excellent capability to promote the transdermal delivery of artemisinin, which might also be a promising vehicle for the skin delivery of other hydrophobic natural drugs.


Subject(s)
Artemisinins/pharmacology , Ibuprofen/pharmacology , Ionic Liquids/chemistry , Lidocaine/pharmacology , Skin Absorption/drug effects , Administration, Cutaneous , Animals , Artemisinins/administration & dosage , Artemisinins/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Emulsions/chemistry , Ibuprofen/administration & dosage , Ibuprofen/chemistry , Lidocaine/administration & dosage , Lidocaine/chemistry , Mice , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...