Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(35): 41743-41754, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37610187

ABSTRACT

Nanoparticle (NP)-mediated drug delivery systems are promising for treating various diseases. However, clinical translation has been delayed by a variety of limitations, such as weak drug loading, nonspecific drug leakage, lack of bioactivity, and short blood circulation. These issues are in part due to the unsatisfactory function of biomaterials for nanocarriers. In addition, the synthesis procedures of drug carrier materials, especially polymers, were usually complicated and led to high cost. In this report, a bioactive copolymer of hydroxy acid and amino acid, poly(salicylic acid-co-phenylalanine) (PSP), was developed for the first time via a one-step rapid and facile synthesis strategy. The PSP could self-assemble into NPs (PSP-NPs) to co-load relatively hydrophilic sphingosine kinase 1 inhibitor (PF543 in HCl salt format) and highly hydrophobic paclitaxel (PTX) to form PF543/PTX@PSP-NPs with efficient dual drug loading. Encouragingly, PF543/PTX@PSP-NPs showed long blood circulation, good stability, and high tumor accumulation, leading to significantly enhanced therapeutic effects on breast cancer. Furthermore, PF543/PTX@PSP-NPs could additionally suppress the lung metastasis of breast cancer, and more importantly, the PSP-NPs themselves as therapeutic nanocarriers also showed an anti-breast cancer effect. With these combined advantages, this new polymer and corresponding NPs will provide valuable insights into the development of new functional polymers and nanomedicines for important diseases.


Subject(s)
Lung Neoplasms , Phenylalanine , Humans , Paclitaxel , Drug Carriers , Polymers
2.
ACS Nano ; 17(6): 5421-5434, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36929948

ABSTRACT

Upon myocardial infarction (MI), activated cardiac fibroblasts (CFs) begin to remodel the myocardium, leading to cardiac fibrosis and even heart failure. No therapeutic approaches are currently available to prevent the development of MI-induced pathological fibrosis. Most pharmacological trials fail from poor local drug activity and side effects caused by systemic toxicity, largely due to the lack of a heart-targeted drug delivery system that is selective for activated CFs. Here, we developed a reduced glutathione (GSH)-responsive nanoparticle platform capable of targeted delivering of drugs to activated CFs within the infarct area of a post-MI heart. Compared with systemic drug administration, CF-targeted delivery of PF543, a sphingosine kinase 1 inhibitor identified in a high-throughput antifibrotic drug screening, had higher therapeutic efficacy and lower systemic toxicity in a MI mouse model. Our results provide a CF-targeted strategy to deliver therapeutic agents for pharmacological intervention of cardiac fibrosis.


Subject(s)
Cysteine , Myocardial Infarction , Mice , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardium/pathology , Fibrosis , Fibroblasts , Disease Models, Animal
3.
ACS Nano ; 17(4): 3334-3345, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36752654

ABSTRACT

Ferroptosis is an alternative strategy to overcome chemoresistance, but effective therapeutic approaches to induce ferroptosis for acute myeloid leukemia (AML) treatment are limited. Here, we developed glutathione (GSH)-responsive cysteine polymer-based ferroptosis-inducing nanomedicine (GCFN) as an efficient ferroptosis inducer and chemotherapeutic drug nanocarrier for AML treatment. GCFN depleted intracellular GSH and inhibited glutathione peroxidase 4, a GSH-dependent hydroperoxidase, to cause lipid peroxidation and ferroptosis in AML cells. Furthermore, GCFN-loaded paclitaxel (PTX@GCFN) targeted AML cells and spared normal hematopoietic cells to limit the myeloablation side effects caused by paclitaxel. PTX@GCFN treatment extended the survival of AML mice by specifically releasing paclitaxel and simultaneously inducing ferroptosis in AML cells with restricted myeloablation and tissue damage side effects. Overall, the dual-functional GCFN acts as an effective ferroptosis inducer and a chemotherapeutic drug carrier for AML treatment.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Animals , Mice , Cysteine , Polymers/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Oxidation-Reduction
4.
ACS Appl Mater Interfaces ; 13(42): 49658-49670, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34648254

ABSTRACT

In recent decades, many poly(amino acid)s have been successfully prepared for various biomedical applications. To date, the synthesis and purification procedures used to generate these poly(amino acid)s have generally been complicated and costly. Here, a one-step synthesis strategy was developed and optimized via direct polymerization using thionyl chloride to easily and economically obtain poly(amino acid)s. Phenylalanine (Phe) was selected as a model amino acid to construct a family of biodegradable and biocompatible poly(phenylalanine) (PPhe) molecules with a tunable molecular weight. The prepared PPhe can self-assemble into nanoparticles (PP-NPs) through nanoprecipitation with a particle size of approximately 100 nm. PP-NPs exhibit a high drug-loading capacity (>12 wt %) of paclitaxel (PTX, a commercial antitumor drug) and good therapeutic effects in CT26 cells. The in vivo evaluation of PTX@PP-NPs indicates that it has a prolonged blood circulation time and high tumor aggregation after intravenous injection, resulting in significant antitumor effects in CT26 tumor-bearing mice with minimal toxicity to normal organs. Overall, this study provides a facile and simple strategy for synthesizing poly(amino acids) and a PPhe-based nanoparticle platform for effectively delivering various small-molecule drugs.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Paclitaxel/pharmacology , Phenylalanine/chemistry , Polymers/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Female , Humans , Materials Testing , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Paclitaxel/chemistry , Phenylalanine/chemical synthesis , Polymers/chemical synthesis , Rats , Rats, Sprague-Dawley
5.
J Mater Sci Mater Med ; 30(6): 58, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31127370

ABSTRACT

Clinical application of cisplatin (CDDP) against various solid tumors is often limited due to its poor selectivity and severe side effect. Considering this, in our study, CDDP was incorporated in fluorescent PEG amine grafted aldehyde hyaluronic acid by imine bond and metal ion coordination bond linking and formed a complex, the complex was then self-assembled into nanoparticles in water simply. FT-IR, XRD, DLS and SEM analysis demonstrated that the nanoparticles were prepared successfully and exhibited a spherical structure with size ranged from 216.4 to 372.3 nm in diameter. CDDP releasing from the nanoparticles was in a controlled manner, and had faster release rate at lower pH, indicating the nanoparticles were responsive to tumor micro-acid environment. Since fluorescent Cy5.5 and targeting hyaluronic acid existed on the surface of the nanoparticles, CLSM images clearly showed that the nanoparticles could target and internalize into HeLa cells, and then inhibited the growth of HeLa cells. In addition, MTT, AO-EB staining, and hemolysis assay showed that the nanoparticles had good cyto-/hemo-compatibility. Hence, the nanoparticles had the potential to be used for cancer therapy and diagnosis. The further in vivo experiment will be shown in the next work. pH responsible and fluorescent Cy5.5-PEG-g-A-HA/CDDP complex nanoparticles were facilely fabricated for controlled and targeted delivery of CDDP.


Subject(s)
Cisplatin/administration & dosage , Drug Delivery Systems , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Polyethylene Glycols/chemistry , Aldehydes/chemistry , Antineoplastic Agents/administration & dosage , Carbocyanines/chemistry , Cell Line, Tumor , Drug Carriers , Fluorescent Dyes/chemistry , HeLa Cells , Hemolysis , Humans , Hydrogen-Ion Concentration , Imines/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
6.
J Nanosci Nanotechnol ; 19(6): 3277-3287, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30744754

ABSTRACT

Aldehyde hyaluronic acid-cisplatin (A-HA-CDDP) complex nanoparticles were readily prepared, and CDDP was stably loaded into the core of the NPs through imine bond and coordinate bond linkages. The results show that the NPs were prepared successfully by a chemical complexation reaction rather than by physical mixing. Compared to many CDDP and HA complex nanoparticles evaluated in other studies, A-HA-CDDP NPs with imine and coordinate bonds between the A-HA and CDDP displayed better sustained release behavior and pH sensitivity. Therefore, the acidic tumor environment could accelerate the release of CDDP from the NPs. MTT and AO/EB staining assays showed that A-HA-CDDP NPs had comparable cell inhibition with CDDP in HeLa cells as well as little toxicity to NIH3T3 cells. This result indicates that the chemical reaction between A-HA and CDDP had little effect on the antitumor activity of CDDP and that the NPs actively targeted CD44-rich tumor cells. Both a hemolysis test and a protein adsorption assay demonstrated that A-HA-CDDP NPs had good biocompatibility and blood circulation in vivo. Therefore, the NPs have the potential to be used for targeted CDDP delivery in vivo. A subsequent publication will describe the circulation, targeting and tumor inhibition experiments of these NPs in vivo.


Subject(s)
Antineoplastic Agents , Nanoparticles , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , HeLa Cells , Humans , Hyaluronic Acid , Hydrogen-Ion Concentration , Imines/pharmacology , Mice , NIH 3T3 Cells
7.
ACS Appl Mater Interfaces ; 10(32): 26882-26892, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30024147

ABSTRACT

Cisplatin (CDDP) has been considered as one of the most effective anticancer drugs against cervical cancer, but the lack of selectivity of CDDP to tumor tissues often leads to serious toxic side effects. In this study, CDDP-incorporated Cy5.5-PEG- g-A-HA nanoparticles were prepared to endue CDDP the ability to selectively target tumors and fluorescence imaging in vivo. The nanoparticles exhibited a spherical shape with particle sizes between 216.4 and 281.5 nm and had a pH and Cl- concentration dependence on controlled and sustained CDDP release, which was favorable for nanoparticles to release more drugs at acidic tumor microenvironment. Cell biology experiments demonstrated that the nanoparticles had good biocompatibility and tumor targeting; the nanoparticles could selectively bind and internalize into HeLa cells and induce apoptosis, but lead to less cytotoxicity on NIH3T3 cells. What is more, the nanoparticles could be clearly fluorescent-imaged in vivo and showed an effective accumulation at the tumor site. Antitumor test in vivo displayed that the nanoparticles had good antitumor efficiency and low systemic toxicity which improved the life quality of mice. Hence, the CDDP-incorporated Cy5.5-PEG- g-A-HA nanoparticles were a potential delivery system for targeting delivery of CDDP against cervical cancer.


Subject(s)
Nanoparticles , Animals , Antineoplastic Agents , Cell Line , Cisplatin , Drug Delivery Systems , Female , Humans , Hydrogen-Ion Concentration , Mice , Uterine Cervical Neoplasms
8.
Soft Matter ; 13(16): 3003-3012, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28367574

ABSTRACT

Multiresponsive and biocompatible self-healing ε-PL/A-Pul/BPEI hydrogels were prepared in aqueous solution by Schiff base reaction with aldehyded pullulan (A-Pul), ε-poly-l-lysine (ε-PL) and branched polyethyleneimine (BPEI) as materials. The imine bonds were rapidly cross-linked into a hydrogel network within 80 s. Scanning electron microscopy images showed that the hydrogels exhibited a cross-linked structure with the average pore size from 58 to 82 µm. Rheology tests indicated that the hydrogels maintained good mechanical properties. Water contact angles and swelling studies suggested that the hydrogels could swell in water, with a max swell ratio of 1559%, and pH and temperature had an influence on the equilibrium swelling ratio. The hydrogels could be injected either before or after gelation, and they displayed a self-healing process in ddH2O at room temperature based on the dynamic uncoupling and recoupling of the imine bonds. The MTT assays implied that the hydrogels were non-cytotoxic on mice bone marrow mesenchymal stem cells. Therefore, the hydrogels showed potential application in biomedical fields, and consequently further work was performed using the self-healing hydrogels as drug carriers in in vitro/vivo antitumor studies.

9.
J Mater Chem B ; 5(43): 8487-8497, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-32264516

ABSTRACT

Herein, a dual drug-loaded hydrogel delivery system was constructed using aldehyded pullulan (A-Pul), ε-poly-l-lysine (ε-PL), and branched polyethylenimine (BPEI) in an aqueous solution via a Schiff base reaction. CDDP and DOX were loaded into the network of hydrogels for combination drug therapy. Gelation time changed from 40 s to 240 s when reaction solutions were stored at different temperatures. Scanning electron microscopy images and swelling dynamics demonstrated that the hydrogels had a homogeneous porous structure and good swelling behavior. The in vitro degradation rate and drug release rate at pH 7.0 were faster than those at pH 7.4; this indicated that the hydrogels displayed controlled drug release and pH-dependent behavior. The hydrogels could be injected and formed in situ and degraded in vivo, and the dual-drug-loaded hydrogel displayed the most efficient tumor inhibition; this indicated the synergistic anticancer effect of the CDDP + DOX combination therapy in H22 liver tumor-bearing mice. Furthermore, the hydrogels displayed no cytotoxicity against Huh-7 cells and exhibited excellent security and biocompatibility in vivo. Therefore, the hydrogels have potential applications as multidrug carriers for enhanced synergistic therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...