Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 854
Filter
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38727574

ABSTRACT

A pulsed power supply with a short rise time and high repetition frequency is favorable to driving diffusive plasma for strongly oxidizing radical (O3, OH) generation and increasing the system's energy efficiency. In this paper, a 10-stage solid-state linear transformer driver (LTD) with a nanosecond rise time is developed to drive plasma for wastewater treatment. To decrease the rise time, a control system with low jitter is developed to improve the synchronization of pulses using an optocoupler isolation chip. A 10-stage LTD with a rise time of 6.2 ns is realized in the case that the rise time of the single-stage LTD is 5.4 ns. The results show that the LTD can generate pulses on a 300 Ω resistive load with a repetition frequency of 10 kHz, an amplitude of 8.80 kV, an overshoot less than 3.97%, and a reverse overshoot less than 4.82%. The rise time (6.2-33.0 ns), the pulse width (35.9-200.0 ns), and the fall time (10.5-27.6 ns) can be adjusted flexibly and independently by controlling the drive signals of metal oxide semiconductor field effect transistors. The pulsed generator is utilized to drive plasma in the needle-water electrode system. The preliminary experimental results show that the plasma includes abundant oxygen atoms and hydroxyl radicals with high activity, and it is suitable for wastewater treatment.

2.
Sci Total Environ ; : 173495, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797410

ABSTRACT

Zero-valent aluminum (ZVAl) is a potential activator for peroxodisulfate (PDS), yet the dense oxide film on its surface hampers electron transfer for the O-O bond cleavage of PDS. We synthesized zero-valent aluminum-biochar (BM-ZVAl@BC) composites through ball milling, which effectively disrupted the native oxide layer on BM-ZVAl@BC. Within the BM-ZVAl@BC/PDS system, biochar (BC) not only suppressed the rapid oxidation of BM-ZVAl@BC but also enhanced the dispersion and electron transfer rate of ZVAl, thereby improving the overall catalytic efficiency. Consequently, the phenol removal efficacy in the BM-ZVAl@BC/PDS system was notably improved. Optimal catalytic performance of the prepared BM-ZVAl@BC was achieved at a charcoal-to­aluminum mass ratio of 2:1, resulting in 95.7 % phenol removal after 180 min. Quenching experiments and electron spin resonance (ESR) analysis revealed that both free radicals (SO4•-, •OH, and O2•-) and non-radical species (1O2) contributed to phenol degradation, with SO4•- and •OH playing predominant roles. In summary, the BM-ZVAl@BC/PDS system represents an effective and promising technology for the remediation of phenolic water pollutants.

3.
Sci Total Environ ; : 173305, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777056

ABSTRACT

Heat stress (HS) poses a substantial challenge to livestock. Studies have demonstrated that HS reduces fertility and leads to gut microbiota dysbiosis in bulls. However, the impact of the gut microbiota on fertility in bulls during HS is still unclear. Our research revealed that HS exposure decreased semen quality in bulls, and fecal microbiota transplantation (FMT) from heat-stressed bulls to recipient mice resulted in a significant decrease in number of testicular germ cells and epididymal sperm. Untargeted metabolomics methodology and 16S rDNA sequencing conjoint analysis revealed that Akkermansia muciniphila (A. muciniphila) seemed to be a key bacterial regulator of spermatogenesis after HS exposure. Moreover, the research indicated that A. muciniphila regulated secondary bile acid metabolism by promoting the colonization of bile salt hydrolase (BSH)-metabolizing bacteria, leading to increase of retinol absorption in the host gut and subsequently elevation of testicular retinoic acid level, thereby improving spermatogenesis. This study sheds light on the relationship between HS-induced microbiota dysbiosis and spermatogenesis, offering a potential therapeutic approach for addressing bull spermatogenic dysfunction triggered by HS exposure.

4.
Ecotoxicol Environ Saf ; 278: 116400, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38718725

ABSTRACT

Evidence increasingly suggests molybdenum exposure at environmental levels is still associated with adverse human health, emphasizing the necessity to establish a more protective reference dose (RfD). Herein, we conducted a study measuring 15 urinary metals and 30 clinical health indicators in 2267 participants residing near chemical enterprises across 11 Chinese provinces to investigate their relationships. The kidney and cystatin-C emerged as the most sensitive organ and critical effect indicator of molybdenum exposure, respectively. Odds of cystatin-C-defined chronic kidney disease (CKD) in the highest quantile of molybdenum exposure significantly increased by 133.5% (odds ratio [OR]: 2.34, 95% CI: 1.78, 3.11) and 75.8% (OR: 1.76, 95% CI: 1.24, 2.49) before and after adjusting for urinary 14 metals, respectively. Intriguingly, cystatin-C significantly mediated 15.9-89.5% of molybdenum's impacts on liver and lung function, suggesting nephrotoxicity from molybdenum exposure may trigger hepatotoxicity and pulmonary toxicity. We derived a new RfD for molybdenum exposure (0.87 µg/kg-day) based on cystatin-C-defined estimated glomerular filtration rate by employing Bayesian Benchmark Dose modeling analysis. This RfD is significantly lower than current exposure guidance values (5-30 µg/kg-day). Remarkably, >90% of participants exceeded the new RfD, underscoring the significant health impacts of environmental molybdenum exposure on populations in industrial regions of China.


Subject(s)
Molybdenum , Molybdenum/urine , Molybdenum/toxicity , Molybdenum/analysis , Humans , China/epidemiology , Female , Male , Adult , Middle Aged , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Cystatin C , Risk Assessment , Environmental Pollutants/urine , Environmental Pollutants/analysis , Young Adult , Bayes Theorem , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/chemically induced , Aged , Chemical Industry , Kidney/drug effects , Glomerular Filtration Rate/drug effects
5.
Nanomicro Lett ; 16(1): 196, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753068

ABSTRACT

Phase change materials (PCMs) offer a promising solution to address the challenges posed by intermittency and fluctuations in solar thermal utilization. However, for organic solid-liquid PCMs, issues such as leakage, low thermal conductivity, lack of efficient solar-thermal media, and flammability have constrained their broad applications. Herein, we present an innovative class of versatile composite phase change materials (CPCMs) developed through a facile and environmentally friendly synthesis approach, leveraging the inherent anisotropy and unidirectional porosity of wood aerogel (nanowood) to support polyethylene glycol (PEG). The wood modification process involves the incorporation of phytic acid (PA) and MXene hybrid structure through an evaporation-induced assembly method, which could impart non-leaking PEG filling while concurrently facilitating thermal conduction, light absorption, and flame-retardant. Consequently, the as-prepared wood-based CPCMs showcase enhanced thermal conductivity (0.82 W m-1 K-1, about 4.6 times than PEG) as well as high latent heat of 135.5 kJ kg-1 (91.5% encapsulation) with thermal durability and stability throughout at least 200 heating and cooling cycles, featuring dramatic solar-thermal conversion efficiency up to 98.58%. In addition, with the synergistic effect of phytic acid and MXene, the flame-retardant performance of the CPCMs has been significantly enhanced, showing a self-extinguishing behavior. Moreover, the excellent electromagnetic shielding of 44.45 dB was endowed to the CPCMs, relieving contemporary health hazards associated with electromagnetic waves. Overall, we capitalize on the exquisite wood cell structure with unidirectional transport inherent in the development of multifunctional CPCMs, showcasing the operational principle through a proof-of-concept prototype system.

6.
Org Biomol Chem ; 22(20): 4108-4122, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38695833

ABSTRACT

The K2CO3-mediated one-pot reaction of 1,3-acetonedicarboxylates with 2 equiv. of substituted 2-fluoro-1-nitrobenzenes has been developed to synthesize various 2,3-dicarboxylate indoles via a tandem annulation pathway. In the effective reaction, one carbon-carbon double bond, one carbon-carbon single bond and one carbon-nitrogen single bond are formed under open-vessel conditions. DFT calculations are used to rationalize the plausible mechanisms.

7.
Food Funct ; 15(9): 4862-4873, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38587236

ABSTRACT

Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.


Subject(s)
Bifidobacterium bifidum , Gastrointestinal Microbiome , Immunoglobulin A , Probiotics , Tumor Necrosis Factor Ligand Superfamily Member 13 , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Mice , Bifidobacterium bifidum/physiology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Weaning , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Male , Intestines/immunology , Intestines/microbiology , Female , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Mice, Inbred BALB C
8.
J Adv Res ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614215

ABSTRACT

INTRODUCTION: Senescence refers to a state of permanent cell growth arrest and is regarded as a tumor suppressive mechanism, whereas accumulative evidence demonstrate that senescent cells play an adverse role during cancer progression. The scarcity of specific and reliable markers reflecting senescence level in cancer impede our understanding of this biological basis. OBJECTIVES: Senescence-related genes (SRGs) were collected for integrative analysis to reveal the role of senescence in hepatocellular carcinoma (HCC). METHODS: Consensus clustering was used to subtype HCC based on SRGs. Several computational methods, including single sample gene set enrichment analysis (ssGSEA), fuzzy c-means algorithm, were performed. Data of drug sensitivities were utilized to screen potential therapeutic agents for different senescence patients. Additionally, we developed a method called signature-related gene analysis (SRGA) for identification of markers relevant to phenotype of interest. Experimental strategies consisting quantitative real-time PCR (qRT-PCR), ß-galactosidase assay, western blot, and tumor-T cell co-culture system were used to validate the findings in vitro. RESULTS: We identified three robust prognostic clusters of HCC patients with distinct survival outcome, mutational landscape, and immune features. We further extracted signature genes of senescence clusters to construct the senescence scoring system and profile senescence level in HCC at bulk and single-cell resolution. Senescence-induced stemness reprogramming was confirmed both in silico and in vitro. HCC patients with high senescence were immune suppressed and sensitive to Tozasertib and other drugs. We suggested that MAFG, PLIN3, and 4 other genes were pertinent to HCC senescence, and MAFG potentially mediated immune suppression, senescence, and stemness. CONCLUSION: Our findings provide insights into the role of SRGs in patients stratification and precision medicine.

9.
Front Neurol ; 15: 1379801, 2024.
Article in English | MEDLINE | ID: mdl-38606274

ABSTRACT

Growing evidence has demonstrated that peripapillary hyperreflective ovoid mass-like structures (PHOMS) are novel structures rather than a subtype of optic disc drusen. They correspond to the laterally bulging herniation of optic nerve fibers and are believed to be the marker of axoplasmic stasis. PHOMS present in a broad spectrum of diseases, including optic disc drusen, tilted disc syndrome, papilloedema, multiple sclerosis, non-arteritic anterior ischemic optic neuropathy, optic neuritis, Leber hereditary optic neuropathy, and so on. We focus on the multimodal imaging features, pathophysiological mechanisms of PHOMS, and their association with multiple diseases and healthy people in this review to deepen the ophthalmologists' understanding of PHOMS. Additionally, we provide some new directions for future research.

10.
J Colloid Interface Sci ; 665: 1079-1090, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38581719

ABSTRACT

Directly capturing CO2 in ambient air and converting it into value-added fuels using photocatalysis is a potentially valuable technology. In this study, Cu-porphyrin (tetrakis-carboxyphenyl porphyrin copper, CuTCPP) was innovatively anchored on the surface of TiO2 (titanium dioxide) nanosheets to form an S-scheme heterojunction. Based on this, a photocatalytic reaction system for stably converting CO2 in ambient air into value-added fuels at the gas-solid interface was constructed without addition of sacrificial agents and alkaline liquids. Under the illumination of visible light and sunlight, the evolution rate of CO is 56 µmol·g-1·h-1 and 73 µmol·g-1·h-1, respectively, with a potential CO2 conversion rate of 35.8 % and 50.4 %. The enhanced of photocatalytic performance is attributed to the introduction of CuTCPP, which provides additional active sites, significantly improves capture capacity of CO2 and the utilization of electrons. Additionally, the formation of S-scheme heterojunction expands the redox range and improves the separation efficiency of photo-generated charges.

11.
J Org Chem ; 89(8): 5560-5572, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38564232

ABSTRACT

A simple, efficient, and practical method for the synthesis of S-quinolyl xanthates was developed via Ts2O-promoted deoxygenative C-H dithiocarbonation of quinoline N-oxides with various potassium O-alkyl xanthates. The reaction performed well under transition-metal-free, base-free, and room-temperature conditions with wide substrate tolerance. Employing potassium O-tert-butyl xanthate (tBuOCS2K) as a nucleophile, some valuable quinoline-2-thiones were unexpectedly obtained in a one-pot reaction without any additional base.

12.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1028-1043, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621910

ABSTRACT

This study aims to decipher the mechanism of Buzhong Yiqi Decoction(BZYQD) in the treatment of spleen deficiency syndrome via gut microbiota. The mouse models of spleen deficiency syndrome were established by fecal microbiota transplantation(FMT, from patients with spleen deficiency syndrome) and administration of Sennae Folium(SF, 10 g·kg~(-1)), respectively, and treated with BZYQD for 5 d. The pseudosterile mice(administrated with large doses of antibiotics) and the mice transplanted with fecal bacteria from healthy human were taken as the controls. The levels of IgA, interleukin(IL)-2, IL-1ß, interferon(IFN)-γ, tumor necrosis factor-alpha(TNF-α), and 5-hydroxytryptamine(5-HT) in the intestinal tissue of two models were measured by enzyme-linked immunosorbent assay, and the CD8~+/CD3~+ ratio was determined by flow cytometry. The composition and changes of the gut microbiota were determined by 16S rRNA high-throughput sequencing and qPCR. Furthermore, the correlation analysis was performed to study the mediating role of gut microbiota in the treatment. The results showed that BZYQD elevated the IgA level, lowered the IL-1ß, TNF-α, and 5-HT levels, and decreased the CD8~+/CD3~+ ratio in the intestinal tissue of the two models. Moreover, BZYQD had two-way regulatory effects on the levels of IL-2 and IFN-γ. BZYQD inhibited the overgrowth and reduced the richness of gut microbiota in the SF model, and improved the gut microbiota structure in the two models. Algoriphagus, Mycobacterium, and CL500_29_marine_group were the common differential genera in the two models compared with the control. Acinetobacter, Parabacteroides, and Ruminococcus were the differential genera unique to the FMT model, and Sphingorhabdus, Lactobacillus, and Anaeroplasma were the unique differential genera in the SF model. BZYQD was capable of regulating all these genera. The qPCR results showed that BZYQD increased the relative abundance of Akkermansia muciniphila and decreased that of Bacteroides uniformis in the two models. The correlation analysis revealed that the levels of above intestinal cytokines were significantly correlated with characteristic gut microorganisms in different mo-dels. The IL-1ß level had a significantly positive correlation with Acinetobacter and CL500_29_marine_group in the two models, while the different levels of IL-2 and IFN-γ in the two models may be related to its different gut microbiota structures. In conclusion, BZYQD could regulate the disordered gut microbiota structure in different animal models of spleen deficiency syndrome to improve the intestinal immune status, which might be one of the mechanisms of BZYQD in treating spleen deficiency syndrome.


Subject(s)
Gastrointestinal Microbiome , Spleen , Humans , Mice , Animals , Tumor Necrosis Factor-alpha/pharmacology , RNA, Ribosomal, 16S/genetics , Interleukin-2/pharmacology , Serotonin , Immunoglobulin A/pharmacology
13.
Neuron ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38492574

ABSTRACT

Efforts on developing transient receptor potential vanilloid 1 (TRPV1) drugs for pain management have been hampered by deleterious hypo- or hyperthermia caused by TRPV1 agonists/antagonists. Here, we compared the effects of four antagonists on TRPV1 polymodal gating and core body temperature (CBT) in Trpv1+/+, Trpv1-/-, and Trpv1T634A/T634A. Neither the effect on proton gating nor drug administration route, hair coverage, CBT rhythmic fluctuations, or inflammation had any influence on the differential actions of TRPV1 drugs on CBT. We identified the S4-S5 linker region exposed to the vanilloid pocket of TRPV1 to be critical for hyperthermia associated with certain TRPV1 antagonists. PSFL2874, a TRPV1 antagonist we discovered, is effective against inflammatory pain but devoid of binding to the S4-S5 linker and inducing CBT changes. These findings implicate that biased allosteric mechanisms exist for TRPV1 coupling to nociception and CBT regulation, opening avenues for the development of non-opioid analgesics without affecting CBT.

14.
Quant Imaging Med Surg ; 14(3): 2499-2513, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38545035

ABSTRACT

Background: Anterior bone loss (ABL) is a common phenomenon after cervical disc replacement (CDR), which can also be observed after anterior cervical discectomy and fusion (ACDF). This study aimed to investigate the incidence and severity of ABL in single-level CDR and ACDF and explore the association of cervical sagittal alignment with ABL. Methods: This is a single-center retrospective cohort study. A total of 113 patients treated with CDR and 99 patients treated with ACDF were retrospectively reviewed from January 2014 to December 2018 in West China Hospital. Radiological data were collected at pre-operation, 1 week, 3 months postoperatively, and the last follow-up. The incidence and severity of ABL after both CDR and ACDF were evaluated. Cervical sagittal alignment parameters, including C0-C2 angle, cervical lordosis (CL), C2-C7 sagittal vertical axis (cSVA), T1 slope, functional spinal unit angle, disc angle, and surgical level slope, were evaluated. Results: ABL was identified in 75 (66.4%) patients in the CDR group and 57 (57.6%) patients in the ACDF group. There were no significant differences in the incidence, severity, and location of ABL between the ACDF and CDR groups. For patients who underwent ACDF, the proportion of females was significantly higher in the ABL group (64.9% vs. 33.3%, P=0.002), whereas the body mass index (BMI) was significantly lower in the ABL group compared to the non-ABL group (22.72±3.09 vs. 24.60±3.04, P=0.002). No effect of ABL on the short-term clinical outcomes of ACDF and CDR was observed. In the ACDF group, patients with ABL had significantly smaller postoperative CL (11.83°±8.24° vs. 15.25°±8.32°, P=0.04) and cSVA (17.77±10.08 vs. 23.35±9.86 mm, P=0.007). In the CDR group, no significant differences were found in the cervical sagittal parameters between patients with and without ABL (CL: 12.58±8.70 vs. 15.46±8.50, P=0.10; cSVA: 20.95±8.54 vs. 19.40±9.43, P=0.38). Conclusions: ABL is common after both CDR and ACDF with comparable incidence and severity. Cervical sagittal alignment was closely related to ABL after ACDF yet had less influence on ABL after CDR.

15.
Angew Chem Int Ed Engl ; 63(21): e202402044, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38469657

ABSTRACT

The nuanced role of spin effects remains a critical gap in designing proficient open-shell catalysts. This study elucidates an iron-catalyzed allylic C(sp3)-H silylation/alkyne hydrosilylation reaction, in which the spin state of the open-shell iron catalyst dictates the reaction kinetics and pathway. Specifically, spin crossover led to alkyne hydrosilylation, whereas spin conservation resulted in a novel allylic C(sp3)-H silylation reaction. This chemoselectivity, governed by the spin-crossover efficiency, reveals an unexpected dimension in spin effects and a first in the realm of transition-metal-catalyzed in situ silylation of allylic C(sp3)-H bonds, which had been previously inhibited by the heightened reactivity of alkenes in hydrosilylation reactions. Furthermore, this spin crossover can either accelerate or hinder the reaction at different stages within a single catalytic reaction, a phenomenon scarcely documented. Moreover, we identify a substrate-assisted C-H activation mechanism, a departure from known ligand-assisted processes, offering a fresh perspective on C-H activation strategies.

16.
Molecules ; 29(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38474508

ABSTRACT

The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.

17.
Adv Sci (Weinh) ; : e2400274, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38520071

ABSTRACT

Hydrogen storage in MgH2 is an ideal solution for realizing the safe storage of hydrogen. High operating temperature, however, is required for hydrogen storage of MgH2 induced by high thermodynamic stability and kinetic barrier. Herein, flower-like microspheres uniformly constructed by N-doped TiO2 nanosheets coated with TiN nanoparticles are fabricated to integrate the light absorber and thermo-chemical catalysts at a nanometer scale for driving hydrogen storage of MgH2 using solar energy. N-doped TiO2 is in situ transformed into TiNxOy and Ti/TiH2 uniformly distributed inside of TiN matrix during cycling, in which TiN and Ti/TiHx pairs serve as light absorbers that exhibit strong localized surface plasmon resonance effect with full-spectrum light absorbance capability. On the other hand, it is theoretically and experimentally demonstrated that the intimate interface between TiH2 and MgH2 can not only thermodynamically and kinetically promote H2 desorption from MgH2 but also simultaneously weaken Ti─H bonds and hence in turn improve H2 desorption from the combination of weakened Ti─H and Ti─H bonds. The uniform integration of photothermal and catalytic effect leads to the direct action of localized heat generated from TiN on initiating the catalytic effect in realizing hydrogen storage of MgH2 with a capacity of 6.1 wt.% under 27 sun.

18.
Biomedicines ; 12(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398060

ABSTRACT

This in vitro study examines the anti-oral cancer effects and mechanisms of a combined X-ray/SK2 treatment, i.e., X-ray and 6-n-butoxy-10-nitro-12,13-dioxa-11-azatricyclo[7.3.1.02,7]trideca-2,4,6,10-tetraene (SK2). ATP cell viability and flow cytometry-based cell cycle, apoptosis, oxidative stress, and DNA damage assessments were conducted. The X-ray/SK2 treatment exhibited lower viability in oral cancer (Ca9-22 and CAL 27) cells than in normal (Smulow-Glickman, S-G) cells, i.e., 32.0%, 46.1% vs. 59.0%, which showed more antiproliferative changes than with X-ray or SK2 treatment. Oral cancer cells under X-ray/SK2 treatment showed slight subG1 and G2/M increments and induced high annexin V-monitored apoptosis compared to X-ray or SK2 treatment. The X-ray/SK2 treatment showed higher caspase 3 and 8 levels for oral cancer cells than other treatments. X-ray/SK2 showed a higher caspase 9 level in CAL 27 cells than other treatments, while Ca9-22 cells showed similar levels under X-ray and/or SK2. The X-ray/SK2 treatment showed higher reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) depletion than other treatments. Meanwhile, the mitochondrial superoxide (MitoSOX) and glutathione levels in X-ray/SK2 treatment did not exhibit the highest rank compared to others. Moreover, oral cancer cells had higher γH2AX and/or 8-hydroxy-2-deoxyguanosine levels from X-ray/SK2 treatment than others. All these measurements for X-ray/SK2 in oral cancer cells were higher than in normal cells and attenuated by N-acetylcysteine. In conclusion, X-ray/SK2 treatment showed ROS-dependent enhanced antiproliferative, apoptotic, and DNA damage effects in oral cancer cells with a lower cytotoxic influence on normal cells.

19.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403354

ABSTRACT

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Subject(s)
Drugs, Chinese Herbal , Rats , Mice , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-sis , Mice, Inbred C57BL , Drugs, Chinese Herbal/therapeutic use , Signal Transduction , Ischemia/drug therapy , Hindlimb/metabolism , RNA, Messenger/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
20.
Natl Sci Rev ; 11(2): nwad324, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314400

ABSTRACT

Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center's spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.

SELECTION OF CITATIONS
SEARCH DETAIL
...