Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Int J Nanomedicine ; 19: 6777-6809, 2024.
Article in English | MEDLINE | ID: mdl-38983131

ABSTRACT

Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.


Subject(s)
Antineoplastic Agents , Autophagy , Chloroquine , Neoplasms , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Neoplasms/drug therapy , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use
2.
Regen Biomater ; 11: rbae065, 2024.
Article in English | MEDLINE | ID: mdl-38933085

ABSTRACT

Cancer is one of the most challenging diseases in the world. Recently, iron oxide nanoparticles (IONPs) are emerging materials with rapid development and high application value, and have shown great potential on tumor therapy due to their unique magnetic and biocompatible properties. However, some data hint us that IONPs were toxic to normal cells and vital organs. Thus, more data on biosafety evaluation is urgently needed. In this study, we compared the effects of silicon-coated IONPs (Si-IONPs) on two cell types: the tumor cells (Hela) and the normal cells (HEK293T, as 293 T for short), compared differences of protein composition, allocation and physical characteristics between these two cells. The major findings of our study pointed out that 293 T cells death occurred more significant than that of Hela cells after Si-IONPs treatment, and the rate and content of endocytosis of Si-IONPs in 293 T cells was more prominent than in Hela cells. Our results also showed Si-IONPs significant promoted the production of reactive oxygen species and disturbed pathways related to oxidative stress, iron homeostasis, apoptosis and ferroptosis in both two types of cells, however, Hela cells recovered from these disturbances more easily than 293 T. In conclusion, compared with Hela cells, IONPs are more likely to induce 293 T cells death and Hela cells have their own unique mechanisms to defense invaders, reminding scientists that future in vivo and in vitro studies of nanoparticles need to be cautious, and more safety data are needed for further clinical treatment.

3.
J Adv Res ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821357

ABSTRACT

Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.

4.
Eur J Med Chem ; 269: 116311, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38508118

ABSTRACT

Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 µM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-ß-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.


Subject(s)
Amino Acids , Thiazoles , Humans , Thiazoles/pharmacology , Amino Acids/pharmacology , Liver Cirrhosis/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Imidazoles/pharmacology
5.
Biomed Pharmacother ; 173: 116304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401519

ABSTRACT

Glycyrrhetinic acid (GA) shows great efficiency against non-small cell lung cancer (NSCLC), but the detailed mechanism is unclear, which has limited its clinical application. Herein, we investigated the potential targets of GA against NSCLC by activity-based protein profiling (ABPP) technology and the combination of histopathology and proteomics validation. In vitro and in vivo results indicated GA significantly inhibited NSCLC via promotion of peroxiredoxin-6 (Prdx6) and caspase-3 (Casp3)-mediated mitochondrial apoptosis. This original finding will provide theoretical and data support to improve the treatment of NSCLC with the application of GA.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycyrrhetinic Acid , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Glycyrrhetinic Acid/pharmacology , Lung Neoplasms/pathology , Caspase 3 , Peroxiredoxin VI/therapeutic use , Cell Line, Tumor , Apoptosis
6.
J Mater Chem B ; 12(7): 1892-1904, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38305086

ABSTRACT

In recent years, a number of initially approved magnetic iron oxide nanoparticle (IONP)-based nano-medicines have been withdrawn due to the obscure nano-bio effects. Therefore, there is an urgent need to study the cellular effects triggered by IONPs on cells. In this study, we investigate the time-course cellular effects on the response of RAW 264.7 cells caused by Si-IONPs via pharmacological and mass spectrometry-based proteomics techniques. Our results revealed that Si-IONPs were internalized by clathrin-mediated endocytosis within 1 hour, and gradually degraded in endolysosomes over time, which might influence autophagy, oxidative stress, innate immune response, and inflammatory response after 12 hours. Our research provides a necessary assessment of Si-IONPs for further clinical treatment.


Subject(s)
Endocytosis , Proteomics , Lysosomes/metabolism , Endosomes , Magnetic Iron Oxide Nanoparticles
7.
J Phys Chem Lett ; 14(47): 10693-10699, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37988698

ABSTRACT

Activated carbon (AC)-based materials have shown promising performance in carbon capture, offering low cost and sustainable sourcing from abundant natural resources. Despite ACs growing as a new class of materials, theoretical guidelines for evaluating their viability in carbon capture are a crucial research gap. We address this gap by developing a hierarchical guideline, based on fundamental gas-solid interaction strength, that underpins the success and scalability of AC-based materials. The most critical performance indicator is the CO2 adsorption energy, where an optimal range (-0.41 eV) ensures efficiency between adsorption and desorption. Additionally, we consider thermal stability and defect sensitivity to ensure consistent performance under varying conditions. Further, selectivity and capacity play significant roles due to external variables such as partial pressure of CO2 and other ambient air gases (N2, H2O, O2), bridging the gap between theory and reality. We provide actionable examples by narrowing our options to methylamine- and pyridine-grafted graphene.

8.
Psychol Res Behav Manag ; 16: 3845-3856, 2023.
Article in English | MEDLINE | ID: mdl-37724137

ABSTRACT

Purpose: Most studies have supported the view that individuals prefer to reward the in-group and discriminate against the out-group in response to unfair offers in the Ultimatum Game. However, the current study advanced a different view, that is, the "black sheep effect", in which in-group members were punished more severely compared with out-group members. This study aimed to incorporate proposer identity and allocation motive as possible explanations for offer rejection. Methods: In the current study, the in-group and out-group identities were distinguished by their health condition, and the allocation motive was defined according to its benefit maximization. With a total of 89 healthy college student participants, a mixed design of 2 (proposer identity: out-group vs in-group) × 2 (allocation motive: selfish vs random) × 2 (offer type: unfair vs fair) was used in the Ultimatum Game. Event-related potential (ERP) technology was used, and ERPs were recorded while participants processed the task. Results: The behavioral result showed that the "black sheep effect" was found on the fair offer when a random allocation motive was used. Our ERP result suggested that feedback-related negativity (FRN) and P300 were modulated by proposer identity but not by allocation motive. However, the allocation motive interacted with proposer identity affecting FRN and P300 when the fair offer was proposed. Conclusion: These findings demonstrated that the "black sheep effect" was related to the experience of the out-group member, such as disadvantage or distress, but it was also modulated by allocation motive. Meanwhile, the out-group (depressed college students) captured more attention because they violated individual expectations, according to the P300. This finding plays an integral role in understanding the mechanism of response to the "black sheep effect".

9.
Arch Pharm (Weinheim) ; 356(8): e2300110, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37328442

ABSTRACT

Four series of novel pyrazole derivatives (compounds 17a-m, 18a-m, 19a-g, and 20a-g) were synthesized, and their antibacterial and antifungal activities were evaluated. Most of the target compounds (17a-m, 18k-m, and 19b-g) showed strong antifungal activity and high selectivity relative to both Gram-positive and Gram-negative bacteria. Among them, compounds 17l (minimum inhibitory concentration [MIC] = 0.25 µg/mL) and 17m (MIC = 0.25 µg/mL) showed the strongest antifungal activity, being 2- and 4-fold more active than the positive controls gatifloxacin and fluconazole, respectively. In particular, compound 17l showed little cytotoxicity against human LO2 cells and did not exhibit hemolysis at ultrahigh concentrations, as did the positive control compounds gatifloxacin and fluconazole. These results indicate that these compounds are valuable for further development as antifungal agents.


Subject(s)
Anti-Bacterial Agents , Thiadiazoles , Humans , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Gatifloxacin , Thiadiazoles/pharmacology , Fluconazole/pharmacology , Structure-Activity Relationship , Gram-Negative Bacteria , Gram-Positive Bacteria , Microbial Sensitivity Tests , Pyrazoles/pharmacology
10.
Research (Wash D C) ; 6: 0148, 2023.
Article in English | MEDLINE | ID: mdl-37250954

ABSTRACT

Nanocarriers have therapeutic potential to facilitate drug delivery, including biological agents, small-molecule drugs, and nucleic acids. However, their efficiency is limited by several factors; among which, endosomal/lysosomal degradation after endocytosis is the most important. This review summarizes advanced strategies for overcoming endosomal/lysosomal barriers to efficient nanodrug delivery based on the perspective of cellular uptake and intracellular transport mechanisms. These strategies include promoting endosomal/lysosomal escape, using non-endocytic methods of delivery to directly cross the cell membrane to evade endosomes/lysosomes and making a detour pathway to evade endosomes/lysosomes. On the basis of the findings of this review, we proposed several promising strategies for overcoming endosomal/lysosomal barriers through the smarter and more efficient design of nanodrug delivery systems for future clinical applications.

11.
Chem Biodivers ; 20(5): e202300105, 2023 May.
Article in English | MEDLINE | ID: mdl-36945745

ABSTRACT

A series of 2-cyclopropyl-5-(5-(6-methylpyridin-2-yl)-2-substituted-1H-imidazol-4-yl)-6-phenylimidazo[2,1-b][1,3,4]thiadiazoles (15a-t and 16a-f) were synthesized and their antibacterial activities were evaluated. More than half of the compounds showed moderate or strong antibacterial activity. Among them, compounds 15t (MIC=1-2 µg/mL) and 16d (MIC=0.5 µg/mL) showed the strongest antibacterial activities. Notably, compound 16d did not exhibit cytotoxicity in HepG2 cells and did not show hemolysis like the positive control compound Gatifloxacin. The results suggest that compound 16d should be further investigated as a candidate antibacterial agent.


Subject(s)
Anti-Bacterial Agents , Nitroimidazoles , Anti-Bacterial Agents/pharmacology , Imidazoles/pharmacology , Antifungal Agents/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship
12.
Int J Biol Sci ; 19(3): 789-810, 2023.
Article in English | MEDLINE | ID: mdl-36778126

ABSTRACT

Cancer has been considered as complex malignant consequence of genetic mutations that control the cellular proliferation, differentiation and homeostasis, thus making tumor treatment extremely challenging. To date, a variety of cargo molecules, including nucleic acids drugs (pDNA, miRNA and siRNA), therapeutic drugs (doxorubicin, paclitaxel, daunomycin and gefitinib) and imaging agents (radioisotopes, fluorescence dyes, and MRI contrast agents) have been regarded as the potential medicines in clinical application. However, non-single therapeutic drug could induce the satisfied clinical results because of tumor heterogeneity and multiple drug resistance and the nanotechnology-based combined therapy is becoming an advanced important mode for enhanced anticancer effects. The review gathers the current advanced development to co-deliver small-molecular drugs and nucleic acids for the anticancer therapy with nanomedicine-based combination. Furthermore, the superiority is definitely presented and the barriers are detail discussed to surmount the clinical challenges. In final, future perspectives in rational direction for combined tumor therapy of drugs and nucleic acids are exhibited.


Subject(s)
Antineoplastic Agents , Neoplasms , Nucleic Acids , Humans , Antineoplastic Agents/therapeutic use , Nucleic Acids/therapeutic use , Drug Carriers , Paclitaxel/pharmacology , Neoplasms/drug therapy , Neoplasms/genetics , Drug Delivery Systems/methods
13.
Molecules ; 27(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36557992

ABSTRACT

Notoginseng and safflower are commonly used traditional Chinese medicines for benefiting qi and activating blood circulation. A previous study by our group showed that the compatibility of the effective components of total saponins of notoginseng (NS) and total flavonoids of safflower (SF), named NS-SF, had a preventive effect on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. However, the therapeutic effect on MI and the synergistic mechanism of NS-SF are still unclear. Therefore, integrated metabolomics, combined with immunohistochemistry and other pharmacological methods, was used to systematically research the therapeutic effect of NS-SF on MI rats and the synergistic mechanism of NS and SF. Compared to NS and SF, the results demonstrated that NS-SF exhibited a significantly better role in ameliorating myocardial damage, apoptosis, easing oxidative stress and anti-inflammation. NS-SF showed a more significant regulatory effect on metabolites involved in sphingolipid metabolism, glycine, serine, and threonine metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, and tricarboxylic acid cycle, such as sphingosine, lysophosphatidylcholine (18:0), lysophosphatidylethanolamine (22:5/0:0), chenodeoxycholic acid, L-valine, glycine, and succinate, than NS or SF alone, indicating that NS and SF produced a synergistic effect on the treatment of MI. This study will provide a theoretical basis for the clinical development of NS-SF.


Subject(s)
Carthamus tinctorius , Myocardial Infarction , Panax notoginseng , Saponins , Rats , Animals , Saponins/pharmacology , Flavonoids/pharmacology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Metabolomics/methods
14.
Mater Today Bio ; 17: 100501, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36466957

ABSTRACT

Calcium phosphate nanoparticles represent promising materials for drug delivery because of its favorable properties, including biocompatibility, biodegradability and strong affinity for binding to nucleic acids (pDNA, siRNA, miRNA, etc.) and therapeutic drugs (cisplatin, carboplatin, paclitaxel, gefitinib, doxorubicin, etc.). Various strategies to prepare the size-controllable, stable, targeting and pH-responsive CaP nanocarriers have been extensively developed as the potential candidates in clinic. This review discusses the mostly recent developments in the design of calcium phosphate nanocarriers as drug delivery systems and therapeutic agents. Additionally, the advantage is unquestionably demonstrated and the obstacles are thoroughly examined in order to overcome future clinical issues.

15.
Article in English | MEDLINE | ID: mdl-35849478

ABSTRACT

High-performance noble metal-free gas sensors are crucial for widespread applications in various areas. Non-Nernstian electrochemical sensors have attracted tremendous attention, but are limited by the high cost and low efficiency of Pt electrode. Moreover, responses from different electrodes usually have the same polarity, degrading the sensor performance. Here we report a reverse response on a series of mixed ionic-electronic conductors (MIECs). Exemplary SrFe0.5Ti0.5O3-δ (SFT50) perovskite shows excellent H2 sensing properties, including high sensitivity and selectivity, humidity resistance, and long-term stability. Strikingly, the response is positive, as opposed to the usual one. Such an unusual response is ascribed to the change of the surface electrostatic potential due to the gas chemical reaction, which outcompetes traditional mechanisms, thereby reversing the response polarity. A conceptual noble-metal-free sensor with dual oxide electrodes of opposite polarity is designed by substituting SFT50 for the benchmark Pt, achieving a 1.5-2.0× increase in H2 response, sensitivity, and selectivity and a low limit of detection of 16 ppb. The ideal unity of excellent sensing and unusual polarity for MIECs can be used to optimize the performance of a variety of conventional sensors while reducing the cost. Our findings provide new insights into electrochemical gas sensing and offer a facile approach for developing low-cost high-performance gas sensors.

16.
Mil Med Res ; 9(1): 30, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35698214

ABSTRACT

BACKGROUND: Malaria is a devastating infectious disease that disproportionally threatens hundreds of millions of people in developing countries. In the history of anti-malaria campaign, chloroquine (CQ) has played an indispensable role, however, its mechanism of action (MoA) is not fully understood. METHODS: We used the principle of photo-affinity labeling and click chemistry-based functionalization in the design of a CQ probe and developed a combined deconvolution strategy of activity-based protein profiling (ABPP) and mass spectrometry-coupled cellular thermal shift assay (MS-CETSA) that identified the protein targets of CQ in an unbiased manner in this study. The interactions between CQ and these identified potential protein hits were confirmed by biophysical and enzymatic assays. RESULTS: We developed a novel clickable, photo-affinity chloroquine analog probe (CQP) which retains the antimalarial activity in the nanomole range, and identified a total of 40 proteins that specifically interacted and photo-crosslinked with CQP which was inhibited in the presence of excess CQ. Using MS-CETSA, we identified 83 candidate interacting proteins out of a total of 3375 measured parasite proteins. At the same time, we identified 8 proteins as the most potential hits which were commonly identified by both methods. CONCLUSIONS: We found that CQ could disrupt glycolysis and energy metabolism of malarial parasites through direct binding with some of the key enzymes, a new mechanism that is different from its well-known inhibitory effect of hemozoin formation. This is the first report of identifying CQ antimalarial targets by a parallel usage of labeled (ABPP) and label-free (MS-CETSA) methods.


Subject(s)
Antimalarials , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Humans , Malaria/drug therapy , Mass Spectrometry
17.
J Pharm Anal ; 12(6): 879-888, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36605576

ABSTRACT

The composition of serum is extremely complex, which complicates the discovery of new pharmacodynamic biomarkers via serum proteome for disease prediction and diagnosis. Recently, nanoparticles have been reported to efficiently reduce the proportion of high-abundance proteins and enrich low-abundance proteins in serum. Here, we synthesized a silica-coated iron oxide nanoparticle and developed a highly efficient and reproducible protein corona (PC)-based proteomic analysis strategy to improve the range of serum proteomic analysis. We identified 1,070 proteins with a median coefficient of variation of 12.56% using PC-based proteomic analysis, which was twice the number of proteins identified by direct digestion. There were also more biological processes enriched with these proteins. We applied this strategy to identify more pharmacodynamic biomarkers on collagen-induced arthritis (CIA) rat model treated with methotrexate (MTX). The bioinformatic results indicated that 485 differentially expressed proteins (DEPs) were found in CIA rats, of which 323 DEPs recovered to near normal levels after treatment with MTX. This strategy can not only help enhance our understanding of the mechanisms of disease and drug action through serum proteomics studies, but also provide more pharmacodynamic biomarkers for disease prediction, diagnosis, and treatment.

18.
Membranes (Basel) ; 11(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34677532

ABSTRACT

Triple ionic-electronic conductors have received much attention as electrode materials. In this work, the bulk characteristics of oxygen diffusion and surface exchange were determined for the triple-conducting BaCo0.4Fe0.4Zr0.2-XYXO3-δ suite of samples. Y substitution increased the overall size of the lattice due to dopant ionic radius and the concomitant formation of oxygen vacancies. Oxygen permeation measurements exhibited a three-fold decrease in oxygen permeation flux with increasing Y substitution. The DC total conductivity exhibited a similar decrease with increasing Y substitution. These relatively small changes are coupled with an order of magnitude increase in surface exchange rates from Zr-doped to Y-doped samples as observed by conductivity relaxation experiments. The results indicate that Y-doping inhibits bulk O2- conduction while improving the oxygen reduction surface reaction, suggesting better electrode performance for proton-conducting systems with greater Y substitution.

19.
Nat Prod Rep ; 38(7): 1243-1250, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34287440

ABSTRACT

Covering: Up to 2020 Artemisinin has made a significant contribution towards global malaria control since its initial discovery. Countless lives have been saved by this unique and miraculous molecule. In 2006, artemisinin-based combination therapies (ACTs) were recommended by the World Health Organization (WHO) as the first-line treatment for uncomplicated malaria infection and have since remained as the mainstays of the antimalarial treatment. Even so, substantial efforts to pursue better curative effects for the treatment of malaria have never ceased, particularly with regards to the circumstances surrounding the appearance of delayed clearance of malaria parasites by 3 day ACT treatments in South-East Asian countries. Strategies to further optimize artemisinin-based therapies, including synthesizing better artemisinin derivatives, developing advanced drug delivery systems, and diversifying artemisinin partner drugs, have been proposed over the past few years. Here, we provide an updated account of the continuous efforts in improving ACTs for better efficacy in curing malarial infection.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Malaria/drug therapy , Drug Delivery Systems , Drug Therapy, Combination , Humans , Molecular Structure
20.
Med Res Rev ; 41(6): 3156-3181, 2021 11.
Article in English | MEDLINE | ID: mdl-34148245

ABSTRACT

Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.


Subject(s)
Antimalarials , Artemisia annua , Artemisinins , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Repositioning , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...