Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302277, 2024.
Article in English | MEDLINE | ID: mdl-38743665

ABSTRACT

Enhanced animal welfare has emerged as a pivotal element in contemporary precision animal husbandry, with bovine monitoring constituting a significant facet of precision agriculture. The evolution of intelligent agriculture in recent years has significantly facilitated the integration of drone flight monitoring tools and innovative systems, leveraging deep learning to interpret bovine behavior. Smart drones, outfitted with monitoring systems, have evolved into viable solutions for wildlife protection and monitoring as well as animal husbandry. Nevertheless, challenges arise under actual and multifaceted ranch conditions, where scale alterations, unpredictable movements, and occlusions invariably influence the accurate tracking of unmanned aerial vehicles (UAVs). To address these challenges, this manuscript proposes a tracking algorithm based on deep learning, adhering to the Joint Detection Tracking (JDT) paradigm established by the CenterTrack algorithm. This algorithm is designed to satisfy the requirements of multi-objective tracking in intricate practical scenarios. In comparison with several preeminent tracking algorithms, the proposed Multi-Object Tracking (MOT) algorithm demonstrates superior performance in Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), and IDF1. Additionally, it exhibits enhanced efficiency in managing Identity Switches (ID), False Positives (FP), and False Negatives (FN). This algorithm proficiently mitigates the inherent challenges of MOT in complex, livestock-dense scenarios.


Subject(s)
Algorithms , Animals , Cattle , Animal Husbandry/methods , Unmanned Aerial Devices , Animal Welfare , Deep Learning
2.
Article in English | MEDLINE | ID: mdl-37021882

ABSTRACT

Deep reinforcement learning (DRL) and deep multiagent reinforcement learning (MARL) have achieved significant success across a wide range of domains, including game artificial intelligence (AI), autonomous vehicles, and robotics. However, DRL and deep MARL agents are widely known to be sample inefficient that millions of interactions are usually needed even for relatively simple problem settings, thus preventing the wide application and deployment in real-industry scenarios. One bottleneck challenge behind is the well-known exploration problem, i.e., how efficiently exploring the environment and collecting informative experiences that could benefit policy learning toward the optimal ones. This problem becomes more challenging in complex environments with sparse rewards, noisy distractions, long horizons, and nonstationary co-learners. In this article, we conduct a comprehensive survey on existing exploration methods for both single-agent RL and multiagent RL. We start the survey by identifying several key challenges to efficient exploration. Then, we provide a systematic survey of existing approaches by classifying them into two major categories: uncertainty-oriented exploration and intrinsic motivation-oriented exploration. Beyond the above two main branches, we also include other notable exploration methods with different ideas and techniques. In addition to algorithmic analysis, we provide a comprehensive and unified empirical comparison of different exploration methods for DRL on a set of commonly used benchmarks. According to our algorithmic and empirical investigation, we finally summarize the open problems of exploration in DRL and deep MARL and point out a few future directions.

3.
Expert Syst Appl ; 176: 114848, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33746369

ABSTRACT

The capability of generalization to unseen domains is crucial for deep learning models when considering real-world scenarios. However, current available medical image datasets, such as those for COVID-19 CT images, have large variations of infections and domain shift problems. To address this issue, we propose a prior knowledge driven domain adaptation and a dual-domain enhanced self-correction learning scheme. Based on the novel learning scheme, a domain adaptation based self-correction model (DASC-Net) is proposed for COVID-19 infection segmentation on CT images. DASC-Net consists of a novel attention and feature domain enhanced domain adaptation model (AFD-DA) to solve the domain shifts and a self-correction learning process to refine segmentation results. The innovations in AFD-DA include an image-level activation feature extractor with attention to lung abnormalities and a multi-level discrimination module for hierarchical feature domain alignment. The proposed self-correction learning process adaptively aggregates the learned model and corresponding pseudo labels for the propagation of aligned source and target domain information to alleviate the overfitting to noises caused by pseudo labels. Extensive experiments over three publicly available COVID-19 CT datasets demonstrate that DASC-Net consistently outperforms state-of-the-art segmentation, domain shift, and coronavirus infection segmentation methods. Ablation analysis further shows the effectiveness of the major components in our model. The DASC-Net enriches the theory of domain adaptation and self-correction learning in medical imaging and can be generalized to multi-site COVID-19 infection segmentation on CT images for clinical deployment.

4.
Article in English | MEDLINE | ID: mdl-32548100

ABSTRACT

Gene selection algorithm in micro-array data classification problem finds a small set of genes which are most informative and distinctive. A well-performed gene selection algorithm should pick a set of genes that achieve high performance and the size of this gene set should be as small as possible. Many of the existing gene selection algorithms suffer from either low performance or large size. In this study, we propose a wrapper gene selection approach, named WERFE, within a recursive feature elimination (RFE) framework to make the classification more efficient. This WERFE employs an ensemble strategy, takes advantages of a variety of gene selection methods and assembles the top selected genes in each approach as the final gene subset. By integrating multiple gene selection algorithms, the optimal gene subset is determined through prioritizing the more important genes selected by each gene selection method and a more discriminative and compact gene subset can be selected. Experimental results show that the proposed method can achieve state-of-the-art performance.

5.
Front Bioeng Biotechnol ; 8: 605132, 2020.
Article in English | MEDLINE | ID: mdl-33425871

ABSTRACT

Automatic extraction of liver and tumor from CT volumes is a challenging task due to their heterogeneous and diffusive shapes. Recently, 2D deep convolutional neural networks have become popular in medical image segmentation tasks because of the utilization of large labeled datasets to learn hierarchical features. However, few studies investigate 3D networks for liver tumor segmentation. In this paper, we propose a 3D hybrid residual attention-aware segmentation method, i.e., RA-UNet, to precisely extract the liver region and segment tumors from the liver. The proposed network has a basic architecture as U-Net which extracts contextual information combining low-level feature maps with high-level ones. Attention residual modules are integrated so that the attention-aware features change adaptively. This is the first work that an attention residual mechanism is used to segment tumors from 3D medical volumetric images. We evaluated our framework on the public MICCAI 2017 Liver Tumor Segmentation dataset and tested the generalization on the 3DIRCADb dataset. The experiments show that our architecture obtains competitive results.

6.
Front Neurosci ; 13: 144, 2019.
Article in English | MEDLINE | ID: mdl-30930729

ABSTRACT

Gliomas have the highest mortality rate and prevalence among the primary brain tumors. In this study, we proposed a supervised brain tumor segmentation method which detects diverse tumoral structures of both high grade gliomas and low grade gliomas in magnetic resonance imaging (MRI) images based on two types of features, the gradient features and the context-sensitive features. Two-dimensional gradient and three-dimensional gradient information was fully utilized to capture the gradient change. Furthermore, we proposed a circular context-sensitive feature which captures context information effectively. These features, totally 62, were compressed and optimized based on an mRMR algorithm, and random forest was used to classify voxels based on the compact feature set. To overcome the class-imbalanced problem of MRI data, our model was trained on a class-balanced region of interest dataset. We evaluated the proposed method based on the 2015 Brain Tumor Segmentation Challenge database, and the experimental results show a competitive performance.

7.
Opt Express ; 27(5): 6757-6769, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876255

ABSTRACT

In this paper, we theoretically and experimentally analyze the frequency-comb interferometry at 518 nm in the underwater environment, which we use to measure the underwater distance with high accuracy and precision. In the time domain, we analyze the principle of pulse cross correlation. The interferograms can be obtained in the vicinity of N∙lpp, where N is an integer and lpp is the pulse-to-pulse length. Due to the strong dispersion of water, the pulse can be broadened as the distance increases. The distance can be measured via the peak position of the interferograms. The experimental results show a difference within 100 µm at 8 m range, compared with the reference values. In the frequency domain, we analyze the principle of dispersive interferometry. The spectrograms can be observed near the location of N∙lpp, due to the low resolution of the optical spectrum analyzer. Because of the strong dispersion of water, the modulation frequency of the spectrogram is not constant. A balanced wavelength will exist with the widest fringe, at which the group optical path difference between the reference and measurement arm is equal to N∙lpp. The position of the widest fringe can be used to measure the distance. Compared with the reference values, the experimental results indicate a difference within 100 µm at 8 m range.

8.
Sensors (Basel) ; 18(11)2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30355977

ABSTRACT

Although tracking research has achieved excellent performance in mathematical angles, it is still meaningful to analyze tracking problems from multiple perspectives. This motivation not only promotes the independence of tracking research but also increases the flexibility of practical applications. This paper presents a significant tracking framework based on the multi-dimensional state⁻action space reinforcement learning, termed as multi-angle analysis collaboration tracking (MACT). MACT is comprised of a basic tracking framework and a strategic framework which assists the former. Especially, the strategic framework is extensible and currently includes feature selection strategy (FSS) and movement trend strategy (MTS). These strategies are abstracted from the multi-angle analysis of tracking problems (observer's attention and object's motion). The content of the analysis corresponds to the specific actions in the multidimensional action space. Concretely, the tracker, regarded as an agent, is trained with Q-learning algorithm and ϵ -greedy exploration strategy, where we adopt a customized rewarding function to encourage robust object tracking. Numerous contrast experimental evaluations on the OTB50 benchmark demonstrate the effectiveness of the strategies and improvement in speed and accuracy of MACT tracker.

9.
Genes (Basel) ; 9(6)2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29914084

ABSTRACT

Feature selection, which identifies a set of most informative features from the original feature space, has been widely used to simplify the predictor. Recursive feature elimination (RFE), as one of the most popular feature selection approaches, is effective in data dimension reduction and efficiency increase. A ranking of features, as well as candidate subsets with the corresponding accuracy, is produced through RFE. The subset with highest accuracy (HA) or a preset number of features (PreNum) are often used as the final subset. However, this may lead to a large number of features being selected, or if there is no prior knowledge about this preset number, it is often ambiguous and subjective regarding final subset selection. A proper decision variant is in high demand to automatically determine the optimal subset. In this study, we conduct pioneering work to explore the decision variant after obtaining a list of candidate subsets from RFE. We provide a detailed analysis and comparison of several decision variants to automatically select the optimal feature subset. Random forest (RF)-recursive feature elimination (RF-RFE) algorithm and a voting strategy are introduced. We validated the variants on two totally different molecular biology datasets, one for a toxicogenomic study and the other one for protein sequence analysis. The study provides an automated way to determine the optimal feature subset when using RF-RFE.

10.
Sensors (Basel) ; 18(4)2018 Apr 09.
Article in English | MEDLINE | ID: mdl-29642518

ABSTRACT

In this paper, we demonstrate a method using a frequency comb, which can precisely measure the refractive index of water. We have developed a simple system, in which a Michelson interferometer is placed into a quartz-glass container with a low expansion coefficient, and for which compensation of the thermal expansion of the water container is not required. By scanning a mirror on a moving stage, a pair of cross-correlation patterns can be generated. We can obtain the length information via these cross-correlation patterns, with or without water in the container. The refractive index of water can be measured by the resulting lengths. Long-term experimental results show that our method can measure the refractive index of water with a high degree of accuracy-measurement uncertainty at 10-5 level has been achieved, compared with the values calculated by the empirical formula.

11.
Sensors (Basel) ; 16(8)2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27483276

ABSTRACT

Location data are among the most widely used context data in context-aware and ubiquitous computing applications. Many systems with distinct deployment costs and positioning accuracies have been developed over the past decade for indoor positioning. The most useful method is focused on the received signal strength and provides a set of signal transmission access points. However, compiling a manual measuring Received Signal Strength (RSS) fingerprint database involves high costs and thus is impractical in an online prediction environment. The system used in this study relied on the Gaussian process method, which is a nonparametric model that can be characterized completely by using the mean function and the covariance matrix. In addition, the Naive Bayes method was used to verify and simplify the computation of precise predictions. The authors conducted several experiments on simulated and real environments at Tianjin University. The experiments examined distinct data size, different kernels, and accuracy. The results showed that the proposed method not only can retain positioning accuracy but also can save computation time in location predictions.

12.
Sensors (Basel) ; 15(9): 22364-77, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26404297

ABSTRACT

Neighbor discovery and the power of sensors play an important role in the formation of Wireless Sensor Networks (WSNs) and mobile networks. Many asynchronous protocols based on wake-up time scheduling have been proposed to enable neighbor discovery among neighboring nodes for the energy saving, especially in the difficulty of clock synchronization. However, existing researches are divided two parts with the neighbor-discovery methods, one is the quorum-based protocols and the other is co-primality based protocols. Their distinction is on the arrangements of time slots, the former uses the quorums in the matrix, the latter adopts the numerical analysis. In our study, we propose the weighted heuristic quorum system (WQS), which is based on the quorum algorithm to eliminate redundant paths of active slots. We demonstrate the specification of our system: fewer active slots are required, the referring rate is balanced, and remaining power is considered particularly when a device maintains rendezvous with discovered neighbors. The evaluation results showed that our proposed method can effectively reschedule the active slots and save the computing time of the network system.


Subject(s)
Algorithms , Computer Communication Networks/instrumentation , Wireless Technology/instrumentation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...