Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3224-3232, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35851115

ABSTRACT

The present study explored the correlation between the hydrodynamic size(i.e., hydrated particle size) and the surface component distribution of spray-dried powder based on the binary system model of berberine hydrochloride and dextran. A variety of mixture solutions containing substances of different proportions were prepared, and the hydrated particle sizes of the solutions were measured by laser light scattering technique. Then the effects of molecular weight and mixing proportion on the particle size were analyzed. After the solutions were spray-dried, the surface components of spray-dried powder were determined by X-ray photoelectron spectroscopy. The changes of hydrated particle size of the two substances in different solutions were measured with the altered solution environments, and the distribution of surface components after spray-drying was observed. The results of particle size measurement showed that different solution environments would change the hydrodynamic size of substances. Specifically, the particle size of berberine hydrochloride increased with the increase in ionic strength and solution pH, while the particle size of dextran decreased with the increase in ionic strength and increased with the increase in solution pH. The results of surface components of the spray-dried powder indicated that berberine hydrochloride was prone to accumulate on the surface of particles during spray-drying because of its large hydrodynamic size. Therefore, hydrodynamic size is considered an important factor affecting the surface component distribution of spray-dried powder. As revealed by scanning electron microscopy of the particle morphology of spray-dried powder, the particles of berberine hydrochloride spray-dried powder were irregularly elliptic, and the particles of dextran and mixture spray-dried powders were irregularly spherical with the shrunken surface. Finally, the FT4 powder rheometer and DVS instrument were used to determine the stability, adhesion, and hygroscopicity of the powder. The results showed that when berberine hydrochloride was enriched on the surface, the adhesion of the mixture increased and the fluidity became worse, but the hygroscopicity was improved to a certain extent. In addition, as found by hygroscopic kinetic curve fitting of spray-dried powder, the hygroscopic behaviors of all spray-dried powder conformed to the double exponential function.


Subject(s)
Berberine , Administration, Inhalation , Aerosols/chemistry , Dextrans , Dry Powder Inhalers/methods , Hydrodynamics , Microscopy, Electron, Scanning , Particle Size , Powders/chemistry
2.
Adv Healthc Mater ; 11(8): e2101745, 2022 04.
Article in English | MEDLINE | ID: mdl-35037424

ABSTRACT

Resistance and tolerance of biofilms to antibiotics is the greatest challenge in the treatment of bacterial infections. Therefore, developing an effective strategy against biofilms is a top priority. Liposomes are widely used as antibiotic drug carriers; however, common liposomes lack affinity for biofilms. Herein, biofilm-targeted antibiotic liposomes are created by simply adjusting their cholesterol content. The tailored liposomes exhibit significantly enhanced bacterial inhibition and biofilm eradication effects that are positively correlated with the cholesterol content of liposomes. The experiments further demonstrate that this enhanced effect can be ascribed to the effective drug release through the pores, which are formed by the combination of cholesterol microdomains in liposomal lipid bilayers with membrane-damaged toxins in biofilms. Consequently, liposome encapsulation with a high cholesterol concentration improves noticeably the pharmacodynamics and biocompatibility of antibiotics after pulmonary administration. This work may provide a new direction for the development of antibiofilm formulations that can be widely used for the treatment of infections caused by bacterial biofilms.


Subject(s)
Anti-Bacterial Agents , Liposomes , Anti-Bacterial Agents/pharmacology , Biofilms , Cholesterol , Drug Carriers/pharmacology , Liposomes/pharmacology , Microbial Sensitivity Tests
3.
ChemistryOpen ; 10(5): 523-533, 2021 05.
Article in English | MEDLINE | ID: mdl-33629516

ABSTRACT

A type of grafted acrylate copolymer resins, containing 3-oxo-N-allyl-1,2-benzisothiazole-2(3H)-carboxamide monomer and heterocyclic monomers, was synthesized through the copolymeri- zation of methyl methacrylate (MMA) and butyl acrylate (BA) with functional monomers. The structures of the monomers and copolymers were validated by infrared (IR) and 1 H nuclear magnetic resonance (NMR) spectroscopies. The inhibitory activities of the copolymers on algae, bacteria, and barnacle larvae were measured, and the antifouling potencies against marine macrofouling organisms were investigated. The results showed that the grafted resin had significant inhibitory effects on the growth of three marine algae (Isochrysis galbana, Nannochloropsisoculata, and Chlorella pyrenoidosa), and three bacteria (Vibrio coralliilyticus, Staphylococcus aureus,and Vibrio parahaemolyticus). The target copolymers also showed excellent inhibition of the survival of barnacle larvae. Additionally, the release rate of the antifoulant and the results of the marine field tests indicated that the grafted copolymers had outstanding antifouling potency against the attachment of marine macrofouling organisms.


Subject(s)
Acrylic Resins/chemistry , Anti-Bacterial Agents/chemistry , Aquatic Organisms/chemistry , Coated Materials, Biocompatible/chemistry , Imidazoles/chemistry , Acrylates/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Biofouling , Chlorella/drug effects , Drug Design , Imidazoles/metabolism , Membranes, Artificial , Methacrylates/chemistry , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Thiazoles/chemistry , Thoracica/chemistry , Vibrio/drug effects , Vibrio parahaemolyticus/chemistry
4.
ACS Omega ; 6(4): 3307-3318, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553948

ABSTRACT

Silybin is a flavonoid lignin compound consisting of two diastereomers with nearly equal molar ratios. It has been reported that silybin can effectively inhibit the aggregation of amyloid protein, but the difference between the two silybin diastereomers has been rarely studied. In this work, the inhibitory ability of silybin to hen egg-white lysozyme (HEWL) was demonstrated, and the difference of kinetic parameters of two diastereomers was analyzed. Fluorescence quenching titration was utilized to analyze the binding differences to native HEWL between the diastereomers, and transmission electron microscopy (TEM) was utilized to analyze the characteristics of the surface of various samples. The differences between hydrophobicity and the secondary structure among several HEWL samples were measured by the 8-anilino-1-naphthalene sulfonic (ANS) acid fluorescence probe, Raman spectra, and far-UV circular dichroism. Moreover, the differences in the binding energy of these two diastereomers with HEWL were analyzed by molecular docking. Also, we have investigated the effect of silybin diastereomers on HEWL fibril-induced cytotoxicity in SH-SY5Y cells. Results show that silybin has a certain inhibitory effect on the HEWL fibrillogenesis process, while silybin B (SB) has a more significant inhibitory effect than silybin A (SA), especially at high concentrations. This work provides some insights into the screening of amyloid inhibitors from complicated natural products and indicates that SB has the prospect of further development as an amyloid inhibitor.

5.
Mol Pharm ; 17(5): 1596-1607, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32142292

ABSTRACT

Pulmonary fibrosis (PF) is a kind of interstitial lung disease with the features of progressive and often fatal dyspnea. Tetrandrine (TET) is the major active constituent of Chinese herbal Stephania tetrandra S. Moore, which has already applied clinically to treat rheumatism, lung cancer, and silicosis. In this work, a tetrandrine-hydroxypropyl-ß-cyclodextrin inclusion compound (TET-HP-ß-CD) was developed for the treatment of pulmonary fibrosis via inhalation administration. TET-HP-ß-CD was prepared by the freeze-drying method and identified using the cascade impactor, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectrum (FT-IR). A bleomycin-induced pulmonary fibrosis rat model was used to assess the effects of inhaled TET and TET-HP-ß-CD. Animal survival, hydroxyproline content in the lungs, and lung histology were detected. The results showed that inhalation of TET-HP-ß-CD alleviated inflammation and fibrosis, limited the accumulation of hydroxyproline in the lungs, regulated protein expression in PF development, and improved postoperative survival. Moreover, nebulized delivery of TET-HP-ß-CD accumulated chiefly in the lungs and limited systemic distribution compared with intravenous administration. The present results indicated that inhalation of TET-HP-ß-CD is an attractive candidate for the treatment of pulmonary fibrosis.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Benzylisoquinolines/chemistry , Pulmonary Fibrosis/drug therapy , 2-Hydroxypropyl-beta-cyclodextrin/administration & dosage , 2-Hydroxypropyl-beta-cyclodextrin/pharmacokinetics , Administration, Inhalation , Animals , Benzylisoquinolines/administration & dosage , Benzylisoquinolines/pharmacokinetics , Disease Models, Animal , Lung/metabolism , Lung/pathology , Male , Pulmonary Fibrosis/mortality , Pulmonary Fibrosis/pathology , Rats , Rats, Sprague-Dawley , Solubility , Spectroscopy, Fourier Transform Infrared , Tumor Necrosis Factor-alpha/analysis
6.
Langmuir ; 36(8): 2136-2142, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32027142

ABSTRACT

Biomineralization is characterized by the fact that the crystallization of inorganic minerals is guided by an in vivo biological interface. However, the interfaces that direct calcification are widely debated up to date. In this paper, it was found that the two-dimensional (2D) immiscible domain of cholesterol in the lipid bilayer can induce the deposition of calcium phosphate by rapidly promoting the nucleation of the hydroxyapatite (001) plane. This promotion effect is related to the high lattice matching degree between the 2D cholesterol immiscible domain and the (001) plane of hydroxyapatite (HAP), which leads to the heteroepitaxy of HAP. The lipid bilayer derived from cells or vesicles is the largest biological interface in the body, thus revealing whether the lipid bilayer can induce the deposition of calcium phosphate will facilitate the understanding of the important role of cells or vesicles in calcification.

7.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2841-2848, 2019 Jul.
Article in Chinese | MEDLINE | ID: mdl-31359699

ABSTRACT

Curcumin( Cur) is a natural active substance extracted from the roots or tubers of traditional Chinese medicinal materials. It has anti-inflammatory and anti-tumor activities on brain diseases. Due to the poor stability,low solubility,poor absorption and low bioavailability of curcumin,N-acetyl-L-cysteine( NAC) was used as an absorption enhancer and mixed with curcumin to improve the absorption of curcumin in the body. In this paper,curcumin was smashed by airflow pulverization,and Cur-NAC mixtures were prepared by being grinded with liquid. Then,the raw material and the product were analyzed by differential scanning calorimetry( DSC),X-ray diffraction( XRD) for structural characterization. The dissolution was determined by high performance liquid chromatography( HPLC) analysis. The characteristic peaks of the samples prepared by grinding method were similar to those of the raw materials,while the melting temperature and the accumulated dissolution degree were not significantly changed. The crystal forms of the products were not changed,and no new crystal form was formed after grinding. After the administration of intranasal powder,blood samples were collected from the orbit,while the whole brain tissues were removed from the skull and dissected into 10 anatomical regions. The concentrations of curcumin in these samples were determined by UPLC-MS/MS. The concentrations of curcumin in plasma and brain were compared at different time points. After intranasal administration of two drugs,it was found that the concentration of curcumin after sniffing up the mixtures in plasma was high,and the concentration of the drug in the olfactory bulb,hippocampus,and pons was increased significantly. Within 0. 083-0. 5 h,the olfactory bulb,piriform lobe and hippocampus remained high concentrations,the endodermis,striatum,hypothalamus and midbrain reached high concentrations within 1-3 h; and the cerebellum,pons and brain extension maintained relatively high concentrations within 3-7 h. The experiment showed that nasal administration of Cur-NAC mixtures can significantly improve the bioavailability of curcumin,and lead to significant differences in brain tissue distribution.


Subject(s)
Acetylcysteine/pharmacology , Brain Chemistry , Curcumin/pharmacokinetics , Administration, Intranasal , Animals , Biological Availability , Brain , Chromatography, Liquid , Rats , Tandem Mass Spectrometry , Tissue Distribution
8.
Eur J Pharm Sci ; 134: 246-255, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31034984

ABSTRACT

Curcumin attracted attention due to its promising anti-cancer properties and safety performance. However, its poor aqueous solubility and low bioavailability have to be overcome before it goes into clinic use. Here, porous composite particles are prepared by loading curcumin into mesoporous material SBA-15, and its therapeutic effect on lung cancer via inhalation administration have also been evaluated. The inclusion of curcumin in host material SBA-15 was confirmed by the reduced surface area and pore diameter of the composite material, and the aerodynamic performance of the composite material was investigated by FT-4 and NGI. Phagocytosis experiments on RAW264.7, the toxicity of material extracts on BEAS-2B cells, and the haemolysis experiments showed that the mesoporous materials had good biocompatibility at 10-400 µg/mL. The B16F10 melanoma metastatic lung mouse model was used to investigate the therapeutic effect of lung cancer after inhalable administration. It was found that the body weight of the curcumin composite particle-administered group decreased more slowly and the lung disease developed slower than the curcumin crude drug group, indicating that the composite particles has a certain inhibitory effect on tumours.


Subject(s)
Curcumin/administration & dosage , Curcumin/therapeutic use , Drug Carriers/administration & dosage , Lung Neoplasms/drug therapy , Administration, Inhalation , Animals , Biological Availability , Cell Culture Techniques , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Neoplasm Metastasis , Particle Size , Phagocytosis , RAW 264.7 Cells , Silicon Dioxide , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...