Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 13(12): e2303930, 2024 05.
Article in English | MEDLINE | ID: mdl-38306618

ABSTRACT

The rapid and effective healing of skin wounds resulted from severe injuries and full-layer skin defects remains a pressing clinical challenge in contemporary medical practice. The reduction of wound infection and rapid healing is helpful to rebuild and repair skin tissue. Here, a thermosensitive chitosan-based wound dressing hydrogel incorporating ß-glycerophosphate (GP), hydroxy propyl cellulose (HPC), graphene oxide (GO), and platelet-rich plasma (PRP) is developed, which exhibits the dual functions of antibacterial properties and repair promotion. GP and HPC enhance the mechanical properties through forming hydrogen bonding connection, while GO produces local heat under near-infrared light, leading to improved blood circulation and skin recovery. Notably, antibacterial properties against Pseudomonas aeruginosa, and control-release of growth factors from PRP are also achieved based on the system. In vitro experiments reveal its biocompatibility, and ability to promote cell proliferation and migration. Animal experiments demonstrate that the epithelial repair and collagen deposition can be promoted during skin wound healing in Sprague Dawley rats. Moreover, a reduction in wound inflammation levels and the improvement of wound microenvironment are observed, collectively fostering effective wound healing. Therefore, the composite hydrogel system incorporated with GO and PRP can be a promising dressing for the treatment of skin wounds.


Subject(s)
Hydrogels , Platelet-Rich Plasma , Rats, Sprague-Dawley , Skin , Wound Healing , Wound Healing/drug effects , Animals , Platelet-Rich Plasma/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/injuries , Skin/drug effects , Rats , Humans , Chitosan/chemistry , Graphite/chemistry , Glycerophosphates/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/drug effects , Male , Cell Proliferation/drug effects , Bandages
2.
Hepatobiliary Pancreat Dis Int ; 23(1): 4-13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37580228

ABSTRACT

BACKGROUND: Gastroesophageal variceal bleeding is one of the most severe complications of patients with cirrhosis. Although primary prevention drugs, including non-selective ß-blockers, have effectively reduced the incidence of bleeding, their efficacy is limited due to side effects and related contraindications. With recent advances in precision medicine, precise drug treatment provides better treatment efficacy. DATA SOURCES: Literature search was conducted in PubMed, MEDLINE and Web of Science for relevant articles published up to May 2022. Information on clinical trials was obtained from https://clinicaltrials.gov/ and http://www.chictr.org.cn/. RESULTS: The in-depth understanding of the pathogenesis and advances of portal hypertension has enabled the discovery of multiple molecular targets for promising drugs. According to the site of action, these drugs could be classified into four classes: intrahepatic, extrahepatic, both intrahepatic and extrahepatic targets and others. All these classes of drugs offer advantages over traditional treatments in prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension. CONCLUSIONS: This review classified and summarized the promising drugs, which prevent gastroesophageal variceal bleeding by targeting specific markers of pathogenesis of portal hypertension, demonstrating the significance of using the precision medicine strategy to discover and develop promising drugs for the primary prevention of gastroesophageal variceal bleeding in patients with cirrhotic portal hypertension.


Subject(s)
Esophageal and Gastric Varices , Hypertension, Portal , Varicose Veins , Humans , Esophageal and Gastric Varices/etiology , Esophageal and Gastric Varices/prevention & control , Gastrointestinal Hemorrhage/etiology , Gastrointestinal Hemorrhage/prevention & control , Hypertension, Portal/complications , Hypertension, Portal/drug therapy , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Primary Prevention
3.
Front Immunol ; 14: 1165989, 2023.
Article in English | MEDLINE | ID: mdl-37153586

ABSTRACT

It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.


Subject(s)
Blood Platelets , Neoplasms , Humans , Carcinogenesis/pathology , Cell Transformation, Neoplastic/pathology , Monocytes/pathology , Tumor Microenvironment
4.
J Transl Med ; 21(1): 337, 2023 05 21.
Article in English | MEDLINE | ID: mdl-37211604

ABSTRACT

OBJECTIVES: To explore an optimal model to predict the response of patients with axillary lymph node (ALN) positive breast cancer to neoadjuvant chemotherapy (NAC) with machine learning using clinical and ultrasound-based radiomic features. METHODS: In this study, 1014 patients with ALN-positive breast cancer confirmed by histological examination and received preoperative NAC in the Affiliated Hospital of Qingdao University (QUH) and Qingdao Municipal Hospital (QMH) were included. Finally, 444 participants from QUH were divided into the training cohort (n = 310) and validation cohort (n = 134) based on the date of ultrasound examination. 81 participants from QMH were used to evaluate the external generalizability of our prediction models. A total of 1032 radiomic features of each ALN ultrasound image were extracted and used to establish the prediction models. The clinical model, radiomics model, and radiomics nomogram with clinical factors (RNWCF) were built. The performance of the models was assessed with respect to discrimination and clinical usefulness. RESULTS: Although the radiomics model did not show better predictive efficacy than the clinical model, the RNWCF showed favorable predictive efficacy in the training cohort (AUC, 0.855; 95% CI 0.817-0.893), the validation cohort (AUC, 0.882; 95% CI 0.834-0.928), and the external test cohort (AUC, 0.858; 95% CI 0.782-0.921) compared with the clinical factor model and radiomics model. CONCLUSIONS: The RNWCF, a noninvasive, preoperative prediction tool that incorporates a combination of clinical and radiomics features, showed favorable predictive efficacy for the response of node-positive breast cancer to NAC. Therefore, the RNWCF could serve as a potential noninvasive approach to assist personalized treatment strategies, guide ALN management, avoiding unnecessary ALND.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Neoadjuvant Therapy , Retrospective Studies , Lymphatic Metastasis/pathology , Machine Learning
5.
J Chemother ; 35(7): 653-661, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36843499

ABSTRACT

Multidrug resistance (MDR) is a major obstacle to the efficacy of hepatocellular carcinoma (HCC) chemotherapy. Previous studies have identified that low FZD3 predicted decreased survival after intraperitoneal versus intravenous-only chemotherapy in ovarian cancer. This study aimed to identify a potential target in HCC chemotherapy. The FZD3 expression variant in HCC cell lines was detected by RT-qPCR and western blotting. The FZD3 expression in the early recurrent HCC group (RE group) and the non-early recurrent HCC group (non-RE group) was measured by RT-qPCR. Then, the 50% inhibitory concentrations (IC50) in HCC cell lines were studied by MTT assay. TOP/FOP FLASH luciferase assay was performed to measure TCF-binding activities. We found that FZD3 was upregulated in three HCC cell lines, and the FZD3 expression was significantly higher in the RE group than in the non-RE group (P = 0.0344). A positive correlation between FZD3 and MDR1 was observed in HCC tissues (R2 = 0.6368, P = 0.0001). Then, we found that FZD3 knockdown significantly altered Huh-7 cell chemotherapeutic sensitivity to cisplatin [50.43 µM in the FZD3 siRNA (siFZD3) group vs 98.59 µM in the siRNA negative control (siNC) group; P = 0.007] or doxorubicin (7.43 µM in the siFZD3 group vs 14.93 µM in the siNC group; P = 0.017). TOP/FOP FLASH luciferase assay showed FZD3 could inhibit Wnt/ß-catenin signaling in HCC cells. Moreover, FZD3 expression knockdown in SNU-449 and Huh-7 cells markedly reduced ß-catenin and phosho-ß-catenin (S37) protein expression, and Cyclin D1, c-myc and MDR1 were significantly decreased. This is the first study to describe the significantly increased FZD3 expression in patients with early recurrent HCC. FZD3 knockdown led to increased sensitivity to chemotherapy by Wnt/ß-catenin signaling inhibition in HCC cell lines. Our study suggests FZD3 as a potential target for reversing chemoresistance in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , beta Catenin/genetics , beta Catenin/metabolism , Wnt Signaling Pathway , Drug Resistance, Neoplasm , Cell Line, Tumor , RNA, Small Interfering/therapeutic use , Luciferases/genetics , Luciferases/metabolism , Luciferases/therapeutic use , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
6.
Micromachines (Basel) ; 13(3)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35334719

ABSTRACT

A single-layer, quartz-supported frequency selective surface (FSS) with a gear-shaped metallic array is proposed for 6G communication. Full-wave simulation, along with the method of equivalent circuit, is applied to investigate the transmission characteristics, while the distributions of surface current distribution, as well as electric field and magnetic fields, are studied to further interpret the transmission mechanism. The simulation indicates that the resonant frequency of 131 GHz with an attenuation of -40 dB can be obtained and the relative bandwidth approximates to 12%. The transmission response of the fabricated FSS prototype is measured using the free space measurement setup. The measured results show a good agreement with the simulated ones, which demonstrates the reliability of the design and fabrication. The proposed FSS with the advantages of simple structure, low cost, easy fabrication, and integration can be applied in enhancing the communication performance and anti-interference ability in the future 6G communication system.

SELECTION OF CITATIONS
SEARCH DETAIL
...