Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 448
Filter
1.
Article in English | MEDLINE | ID: mdl-38976979

ABSTRACT

Organic-inorganic hybrid perovskites have attracted tremendous attentions owing to their excellent properties as next-generation photovoltaic devices. With soft covalent framework, organic-inorganic hybrid perovskites exhibit different phases at different temperatures. The band-edge features of perovskites are mainly contributed by inorganic framework, which means the structural differences between these phases would lead to complex carrier transport. We investigated the carrier transport of Sn-based organic-inorganic hybrid perovskite CH3NH3SnI3 (MASnI3), considering acoustic deformation potential scattering, ionized impurity scattering, and polar optical phonon scattering. It is found that the electron mobility of each phase of MASnI3 is strongly correlated with the Sn-I-Sn bond angle and there is in-plane/out-of-plane anisotropy. The pCOHP (projected crystal orbital Hamilton population) analysis suggested that the tilt and rotation of the [SnI6]4- octahedron influence the Sn(p)-I(p) orbital electron coupling and the electron transport, leading to different band-edge features in multiple phases. The carrier mobility with respect to temperature was further calculated for each phase of MASnI3 in respective temperature intervals, showing lower carrier mobility in high temperature. Comparing the contribution of different scattering mechanisms, it was found that the dominant scattering mechanism is polar optical phonon scattering, while multiple scattering mechanisms compete in individual cases.

2.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987544

ABSTRACT

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cytoplasmic Granules , Germ Cells , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals , Germ Cells/metabolism , Cytoplasmic Granules/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics
3.
Mol Microbiol ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845079

ABSTRACT

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.

4.
ACS Synth Biol ; 13(6): 1956-1962, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38860508

ABSTRACT

Escherichia coli, one of the most efficient expression hosts for recombinant proteins, is widely used in chemical, medical, food, and other industries. De novo engineering of gene regulation circuits and cell density-controlled E. coli cell lysis are promising directions for the release of intracellular bioproducts. Here, we developed an E. coli autolytic system, named the quorum sensing-mediated bacterial autolytic (QS-BA) system, by incorporating an acyl-homoserine lactone (AHL)-based YasI/YasR-type quorum sensing circuit from Pseudoalteromonas into E. coli cells. The results showed that the E. coli QS-BA system can release the intracellular bioproducts into the cell culture medium in terms of E. coli cell density, which offers an environmentally-friendly, economical, efficient, and flexible E. coli lysis platform for production of recombinant proteins. The QS-BA system has the potential to serve as an integrated system for the large-scale production of target products in E. coli for medical and industrial applications.


Subject(s)
Escherichia coli , Quorum Sensing , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Acyl-Butyrolactones/metabolism , Pseudoalteromonas/metabolism , Pseudoalteromonas/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
J Phys Condens Matter ; 36(35)2024 May 31.
Article in English | MEDLINE | ID: mdl-38768607

ABSTRACT

The coupling and interplay between magnon and phonon are important topics for spintronics and magnonics. In this work we studied the nonlinear magnon-phonon coupling in CoF2. First-principles calculations demonstrate that the antiferromagnetic resonance magnon drives a phonon with B1gcharacter; the oscillating driving force has a frequency twice of that of the magnon. Comparing with similar materials indicates a strong correlation between the strength of nonlinear magnon-phonon coupling and the orbital magnetic moment of the magnetic ion. This work pave the way for theoretical study of nonlinear magnon-phonon coupling.

6.
J Magn Reson Imaging ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738786

ABSTRACT

BACKGROUND: Clear cell likelihood score (ccLS) is reliable for diagnosing small renal masses (SRMs). However, the diagnostic value of Clear cell likelihood score version 1.0 (ccLS v1.0) and v2.0 for common subtypes of SRMs might be a potential score extension. PURPOSE: To compare the diagnostic performance and interobserver agreement of ccLS v1.0 and v2.0 for characterizing five common subtypes of SRMs. STUDY TYPE: Retrospective. POPULATION: 797 patients (563 males, 234 females; mean age, 53 ± 12 years) with 867 histologically proven renal masses. FIELD STRENGTH/SEQUENCES: 3.0 and 1.5 T/T2 weighted imaging, T1 weighted imaging, diffusion-weighted imaging, a dual-echo chemical shift (in- and opposed-phase) T1 weighted imaging, multiphase dynamic contrast-enhanced imaging. ASSESSMENT: Six abdominal radiologists were trained in the ccLS algorithm and independently scored each SRM using ccLS v1.0 and v2.0, respectively. All SRMs had definite pathological results. The pooled area under curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the diagnostic performance of ccLS v1.0 and v2.0 for characterizing common subtypes of SRMs. The average κ values were calculated to evaluate the interobserver agreement of the two scoring versions. STATISTICAL TESTS: Random-effects logistic regression; Receiver operating characteristic analysis; DeLong test; Weighted Kappa test; Z test. The statistical significance level was P < 0.05. RESULTS: The pooled AUCs of clear cell likelihood score version 2.0 (ccLS v2.0) were statistically superior to those of ccLS v1.0 for diagnosing clear cell renal cell carcinoma (ccRCC) (0.907 vs. 0.851), papillary renal cell carcinoma (pRCC) (0.926 vs. 0.888), renal oncocytoma (RO) (0.745 vs. 0.679), and angiomyolipoma without visible fat (AMLwvf) (0.826 vs. 0.766). Interobserver agreement for SRMs between ccLS v1.0 and v2.0 is comparable and was not statistically significant (P = 0.993). CONCLUSION: The diagnostic performance of ccLS v2.0 surpasses that of ccLS v1.0 for characterizing ccRCC, pRCC, RO, and AMLwvf. Especially, the standardized algorithm has optimal performance for ccRCC and pRCC. ccLS has potential as a supportive clinical tool. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 2.

7.
Biotechnol Lett ; 46(4): 691-698, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705963

ABSTRACT

Protein FadR is known as a fatty acid metabolism global regulator that sustains cell envelope integrity by changing the profile of fatty acid. Here, we present its unique participation in the defense against reactive oxygen species (ROS) in the bacterium. FadR contributes to defending extracellular ROS by maintaining the permeability of the cell membrane. It also facilitates the ROS detoxification process by increasing the expression of ROS neutralizers (KatB, KatG, and AhpCF). FadR also represses the leakage of ROS by alleviating the respiratory action conducted by terminal cytochrome cbb3-type heme-copper oxidases (ccoNOQP). These findings suggest that FadR plays a comprehensive role in modulating the bacterial oxidative stress response, instead of merely strengthening the cellular barrier against the environment. This study sheds light on the complex mechanisms of bacterial ROS defense and offers FadR as a novel target for ROS control research.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Oxidative Stress , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Cell Membrane/metabolism
8.
Nature ; 630(8016): 484-492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811729

ABSTRACT

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Bacteria/virology , Bacteria/genetics , Bacteria/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Chryseobacterium/genetics , Chryseobacterium/immunology , Chryseobacterium/virology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , DNA Cleavage , Genetic Loci/genetics , Models, Molecular , Protein Domains
9.
J Lipid Res ; 65(6): 100553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704027

ABSTRACT

Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.


Subject(s)
Caenorhabditis elegans , Isoenzymes , Sphingolipids , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Sphingolipids/biosynthesis , Sphingolipids/metabolism , Isoenzymes/metabolism , Isoenzymes/genetics , Tandem Mass Spectrometry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Ceramides/metabolism , Ceramides/biosynthesis , RNA Interference , Chromatography, Liquid
10.
Oncogene ; 43(23): 1769-1778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38632437

ABSTRACT

Pyruvate kinase M2 (PKM2) is a central metabolic enzyme driving the Warburg effect in tumor growth. Previous investigations have demonstrated that PKM2 is subject to O-linked ß-N-acetylglucosamine (O-GlcNAc) modification, which is a nutrient-sensitive post-translational modification. Here we found that unc-51 like autophagy activating kinase 1 (ULK1), a glucose-sensitive kinase, interacts with PKM2 and phosphorylates PKM2 at Ser333. Ser333 phosphorylation antagonizes PKM2 O-GlcNAcylation, promotes its tetramer formation and enzymatic activity, and decreases its nuclear localization. As PKM2 is known to have a nuclear role in regulating c-Myc, we also show that PKM2-S333 phosphorylation inhibits c-Myc expression. By downregulating glucose consumption and lactate production, PKM2 pS333 attenuates the Warburg effect. Through mouse xenograft assays, we demonstrate that the phospho-deficient PKM2-S333A mutant promotes tumor growth in vivo. In conclusion, we identified a ULK1-PKM2-c-Myc axis in inhibiting breast cancer, and a glucose-sensitive phosphorylation of PKM2 in modulating the Warburg effect.


Subject(s)
Autophagy-Related Protein-1 Homolog , Breast Neoplasms , Carrier Proteins , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Warburg Effect, Oncologic , Humans , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Phosphorylation , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Mice , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Acetylglucosamine/metabolism
11.
Phys Chem Chem Phys ; 26(18): 13751-13761, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683175

ABSTRACT

Understanding the dynamics of neurotransmitters is crucial for unraveling synaptic transmission mechanisms in neuroscience. In this study, we investigated the impact of terahertz (THz) waves on the aggregation of four common neurotransmitters through all-atom molecular dynamics (MD) simulations. The simulations revealed enhanced nicotine (NCT) aggregation under 11.05 and 21.44 THz, with a minimal effect at 42.55 THz. Structural analysis further indicated strengthened intermolecular interactions and weakened hydration effects under specific THz stimulation. In addition, enhanced aggregation was observed at stronger field strengths, particularly at 21.44 THz. Furthermore, similar investigations on epinephrine (EPI), 5-hydroxytryptamine (5-HT), and γ-aminobutyric acid (GABA) corroborated these findings. Notably, EPI showed increased aggregation at 19.05 THz, emphasizing the influence of vibrational modes on aggregation. However, 5-HT and GABA, with charged or hydrophilic functional groups, exhibited minimal aggregation under THz stimulation. The present study sheds some light on neurotransmitter responses to THz waves, offering implications for neuroscience and interdisciplinary applications.


Subject(s)
Molecular Dynamics Simulation , Neurotransmitter Agents , Serotonin , Terahertz Radiation , gamma-Aminobutyric Acid , Neurotransmitter Agents/chemistry , gamma-Aminobutyric Acid/chemistry , Serotonin/chemistry , Serotonin/metabolism , Nicotine/chemistry , Epinephrine/chemistry
12.
Appl Environ Microbiol ; 90(2): e0177923, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38193673

ABSTRACT

The Pseudoalteromonas genus marine bacteria have attracted increasing interest because of their abilities to produce bioactive metabolites. The pigmented Pseudoalteromonas group encodes more secondary metabolite biosynthetic gene clusters (BGCs) than the non-pigmented group. Here, we report a yellow pigmented bacterium Pseudoalteromonas sp. strain T1lg65, which was isolated from a mangrove forest sediment. We showed that the yellow pigments of T1lg65 belong to the group of lipopeptide alterochromides. Further genetic analyses of the alterochromide BGC revealed that the yellow pigments are biosynthesized by aryl-polyene synthases and nonribosomal peptide synthases. Within the gene cluster, altA encodes a tyrosine ammonia acid lyase, which catalyzes synthesis of the precursor 4-hydroxycinnamic acid (4-HCA) from tyrosine in the alterochromide biosynthetic pathway. In addition, altN, encoding a putative flavin-dependent halogenase, was proven to be responsible for the bromination of alterochromides based on gene deletion, molecular docking, and site mutagenesis analyses. In summary, the biosynthetic pathway, precursor synthesis, and bromination mechanism of the lipopeptide alterochromides were studied in-depth. Our results expand the knowledge on biosynthesis of Pseudoalteromonas pigments and could promote the development of active pigments in the future.IMPORTANCEThe marine bacteria Pseudoalteromonas spp. are important biological resources because they are producers of bioactive natural products, including antibiotics, pigments, enzymes, and antimicrobial peptides. One group of the microbial pigments, alterochromides, holds a great value for their novel lipopeptide structures and antimicrobial activities. Previous studies were limited to the structural characterization of alterochromides and genome mining for the alterochromide biosynthesis. This work focused on the biosynthetic mechanism for alterochromide production, especially revealing functions of two key genes within the gene cluster for the alterochromide biosynthesis. On the one hand, our study provides a target for metabolic engineering of the alterochromide biosynthesis; on the other hand, the 4-HCA synthase AltA and brominase AltN show potential in the biocatalyst industry.


Subject(s)
Pseudoalteromonas , Pseudoalteromonas/genetics , Pseudoalteromonas/metabolism , Molecular Docking Simulation , Flavins/metabolism , Lipopeptides/metabolism , Tyrosine/metabolism
13.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280710

ABSTRACT

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Subject(s)
Drugs, Chinese Herbal , Lycium , Neoplasms , Mice , Animals , Tumor-Associated Macrophages , Molecular Weight , Drugs, Chinese Herbal/pharmacology , Macrophages , Tumor Microenvironment , Neoplasms/pathology
14.
J Cardiothorac Vasc Anesth ; 38(2): 437-444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38105126

ABSTRACT

OBJECTIVES: It is unknown whether there is a difference in pulmonary outcome in different intraoperative ventilation modes for cardiac surgery with cardiopulmonary bypass (CPB). The aim of this trial was to determine whether patients undergoing cardiac surgery with CPB could benefit from intraoperative optimal ventilation mode. DESIGN: This was a single-center, prospective, randomized controlled trial. SETTING: The study was conducted at a single-center tertiary-care hospital. PARTICIPANTS: A total of 1,364 adults undergoing cardiac surgery with CPB participated in this trial. INTERVENTIONS: Patients were assigned randomly (1:1:1) to receive 1 of 3 ventilation modes: volume-controlled ventilation (VCV), pressure-controlled ventilation (PCV), and pressure-controlled ventilation-volume guaranteed (PCV-VG). All arms of the study received the lung-protective ventilation strategy. MEASUREMENTS AND MAIN RESULTS: The primary outcome was a composite of postoperative pulmonary complications (PPCs) within the first 7 postoperative days. Pulmonary complications occurred in 168 of 455 patients (36.9%) in the PCV-VG group, 171 (37.6%) in the PCV group, and 182 (40.1%) in the VCV group, respectively. There was no statistical difference in the risk of overall pulmonary complications among groups (p = 0.585). There were no significant differences in the severity grade of PPCs within 7 days, postoperative ventilation duration, intensive care unit stay, postoperative hospital stay, or 30-day postoperative mortality. CONCLUSIONS: Among patients scheduled for cardiac surgery with CPB, intraoperative ventilation mode type did not affect the risk of postoperative pulmonary complications.


Subject(s)
Cardiac Surgical Procedures , Respiration, Artificial , Adult , Humans , Respiration, Artificial/adverse effects , Prospective Studies , Lung , Cardiac Surgical Procedures/adverse effects , Cardiopulmonary Bypass/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology
15.
J Proteome Res ; 23(2): 550-559, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38153036

ABSTRACT

In bottom-up proteomics, peptide-spectrum matching is critical for peptide and protein identification. Recently, deep learning models have been used to predict tandem mass spectra of peptides, enabling the calculation of similarity scores between the predicted and experimental spectra for peptide-spectrum matching. These models follow the supervised learning paradigm, which trains a general model using paired peptides and spectra from standard data sets and directly employs the model on experimental data. However, this approach can lead to inaccurate predictions due to differences between the training data and the experimental data, such as sample types, enzyme specificity, and instrument calibration. To tackle this problem, we developed a test-time training paradigm that adapts the pretrained model to generate experimental data-specific models, namely, PepT3. PepT3 yields a 10-40% increase in peptide identification depending on the variability in training and experimental data. Intriguingly, when applied to a patient-derived immunopeptidomic sample, PepT3 increases the identification of tumor-specific immunopeptide candidates by 60%. Two-thirds of the newly identified candidates are predicted to bind to the patient's human leukocyte antigen isoforms. To facilitate access of the model and all the results, we have archived all the intermediate files in Zenodo.org with identifier 8231084.


Subject(s)
Peptides , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Proteins , Models, Theoretical , Proteomics/methods , Algorithms
16.
PLoS Biol ; 21(12): e3002421, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048304

ABSTRACT

Neuronal development orchestrates the formation of an enormous number of synapses that connect the nervous system. In developing presynapses, the core active zone structure has been found to assemble through liquid-liquid phase separation. Here, we find that the phase separation of Caenorhabditis elegans SYD-2/Liprin-α, a key active zone scaffold, is controlled by phosphorylation. We identify the SAD-1 kinase as a regulator of SYD-2 phase separation and determine presynaptic assembly is impaired in sad-1 mutants and increased by overactivation of SAD-1. Using phosphoproteomics, we find SAD-1 phosphorylates SYD-2 on 3 sites that are critical to activate phase separation. Mechanistically, SAD-1 phosphorylation relieves a binding interaction between 2 folded domains in SYD-2 that inhibits phase separation by an intrinsically disordered region (IDR). We find synaptic cell adhesion molecules localize SAD-1 to nascent synapses upstream of active zone formation. We conclude that SAD-1 phosphorylates SYD-2 at developing synapses, activating its phase separation and active zone assembly.


Subject(s)
Caenorhabditis elegans Proteins , Presynaptic Terminals , Animals , Presynaptic Terminals/metabolism , Caenorhabditis elegans Proteins/metabolism , Synapses/metabolism , Caenorhabditis elegans/metabolism , Intercellular Signaling Peptides and Proteins/metabolism
17.
Nat Commun ; 14(1): 8334, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097609

ABSTRACT

Killer meiotic drivers (KMDs) skew allele transmission in their favor by killing meiotic progeny not inheriting the driver allele. Despite their widespread presence in eukaryotes, the molecular mechanisms behind their selfish behavior are poorly understood. In several fission yeast species, single-gene KMDs belonging to the wtf gene family exert selfish killing by expressing a toxin and an antidote through alternative transcription initiation. Here we investigate how the toxin and antidote products of a wtf-family KMD gene can act antagonistically. Both the toxin and the antidote are multi-transmembrane proteins, differing only in their N-terminal cytosolic tails. We find that the antidote employs PY motifs (Leu/Pro-Pro-X-Tyr) in its N-terminal cytosolic tail to bind Rsp5/NEDD4 family ubiquitin ligases, which ubiquitinate the antidote. Mutating PY motifs or attaching a deubiquitinating enzyme transforms the antidote into a toxic protein. Ubiquitination promotes the transport of the antidote from the trans-Golgi network to the endosome, thereby preventing it from causing toxicity. A physical interaction between the antidote and the toxin enables the ubiquitinated antidote to translocate the toxin to the endosome and neutralize its toxicity. We propose that post-translational modification-mediated protein localization and/or activity changes may be a common mechanism governing the antagonistic duality of single-gene KMDs.


Subject(s)
Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Antidotes , Ubiquitination , Golgi Apparatus/metabolism , Ubiquitin/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Ubiquitin-Protein Ligases/metabolism
18.
Trials ; 24(1): 724, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957769

ABSTRACT

BACKGROUND: Preoperative anxiety management is gaining particular attention in paediatric anaesthesia. Pharmacological and non-pharmacological resorts can be implemented to address this special issue. Despite the various approaches currently used for preoperative sedation in children, the different sedative and anti-anxiety effects between the newly marketed anaesthetic, S-ketamine, and the traditional sedative, midazolam, are still unclear. METHODS: This is a patient- and assessor-blinded randomized controlled clinical trial. Participants (n = 110) will receive S-ketamine (0.5 mg/kg) or midazolam (0.08 mg/kg) intravenously administrated at a ratio of 1:1 in the anaesthesia holding area. The primary outcome of this study is the sedative effect evaluated via the change in the modified Yale preoperative anxiety scale. It will be performed at two timepoints: in the pre-anaesthetic holding area before premedication (baseline, marked as T0) and about 5 min after premedication in the operating room without the existence of their guardians (marked as T1). Our secondary objectives include the parent separation anxiety score, postoperative agitation, caregivers' and anaesthesia care providers' satisfaction, and mask compliance. DISCUSSION: This randomized controlled trial is the first study to compare the anti-anxiety effect of intravenous S-ketamine and midazolam. We will provide a new approach for the clinical management of preoperative anxiety in preschool children posted for elective surgery. TRIAL REGISTRATION: ChiCTR2300069998. Registered on 30 March 2023.


Subject(s)
Anesthetics , Anti-Anxiety Agents , Child, Preschool , Humans , Hypnotics and Sedatives/adverse effects , Midazolam/adverse effects , Anti-Anxiety Agents/adverse effects , Double-Blind Method , Randomized Controlled Trials as Topic
19.
PLoS Biol ; 21(11): e3002372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37939137

ABSTRACT

Selective macroautophagy of the endoplasmic reticulum (ER) and the nucleus, known as ER-phagy and nucleophagy, respectively, are processes whose mechanisms remain inadequately understood. Through an imaging-based screen, we find that in the fission yeast Schizosaccharomyces pombe, Yep1 (also known as Hva22 or Rop1), the ortholog of human REEP1-4, is essential for ER-phagy and nucleophagy but not for bulk autophagy. In the absence of Yep1, the initial phase of ER-phagy and nucleophagy proceeds normally, with the ER-phagy/nucleophagy receptor Epr1 coassembling with Atg8. However, ER-phagy/nucleophagy cargos fail to reach the vacuole. Instead, nucleus- and cortical-ER-derived membrane structures not enclosed within autophagosomes accumulate in the cytoplasm. Intriguingly, the outer membranes of nucleus-derived structures remain continuous with the nuclear envelope-ER network, suggesting a possible outer membrane fission defect during cargo separation from source compartments. We find that the ER-phagy role of Yep1 relies on its abilities to self-interact and shape membranes and requires its C-terminal amphipathic helices. Moreover, we show that human REEP1-4 and budding yeast Atg40 can functionally substitute for Yep1 in ER-phagy, and Atg40 is a divergent ortholog of Yep1 and REEP1-4. Our findings uncover an unexpected mechanism governing the autophagosomal enclosure of ER-phagy/nucleophagy cargos and shed new light on the functions and evolution of REEP family proteins.


Subject(s)
Schizosaccharomyces , Humans , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Autophagy/genetics , Endoplasmic Reticulum/metabolism , Autophagosomes/metabolism , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Endoplasmic Reticulum Stress , Membrane Transport Proteins/metabolism
20.
J Phys Condens Matter ; 36(7)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37918105

ABSTRACT

The all-inorganic double perovskite Cs2AgInCl6with three dimensional structure has attracted much attention due to its direct bandgap property and particular luminescence mechanism, which is self-trapped exciton emission. However, it is a pity that Cs2AgInCl6exhibits low photoluminescence quantum yield, which affects its application for light-emitting devices. In this paper, the band structure and transition dipole moment of Cs2AgIn(1-x)SbxCl6(x= 0, 0.25, 0.5, 0.75) are calculated using first principle calculation. The calculated results shows that the pure material Cs2AgInCl6not only has a large band gap but also has the dipole forbidden transition, which means that the electrons cannot be excited from the valence band maximum to the conduction band minimum. However, the substituted Cs2AgIn0.75Sb0.25Cl6have a good property for the band gap about 3.066 eV and break forbidden transition at point X. The reason for its change is due to the overlap of electron and hole for charge density. Our work provides theoretical guidance for the design of more efficient light-emitting devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...