Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
Malays J Med Sci ; 31(3): 125-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38984250

ABSTRACT

Background: Supine percutaneous nephrolithotomy (s-PCNL) offers great benefits from urological and anaesthetic points of view. We present the first evaluation of the outcomes of s-PCNL in Malaysia. Our aim was to explore the safety and efficacy of s-PCNL. Methods: Institutional review board approval was obtained from the National Medical Research Register (NMRR ID-21002225-WLP). We retrospectively reviewed 115 patients with renal pelvis stones who underwent single renal access during s-PCNL between November 2020 and May 2023. Patients who underwent simultaneous ipsilateral or contralateral endourological procedures were included. The data were analysed to determine stone-free rates (SFR), major complication rates, blood transfusion rates, operative times and lengths of hospital stay (LOS). Results: The SFR was higher for the single middle calyceal renal access (MCA) group than for the lower calyceal renal access (LCA) or upper calyceal renal access (UCA) groups (OR: 1.76; 95% confidence interval [CI]: 0.63, 4.92). In total, 0, 1 and 2 patients had major complications in the UCA, MCA and LCA groups, respectively (P = 0.453). One of the 115 patients (0.9%) needed blood transfusion. Subgroup analysis revealed mean operative times of 76.3 min and 78.6 min for patients who underwent sole s-PCNL (PCNL-only group) and those who had simultaneous ipsilateral and contralateral endourological procedures (PCNL-plus group), respectively (P = 0.786). The overall mean LOS was 2.9 days. Conclusion: s-PCNL is a safe and effective alternative treatment for renal stones. We would recommend s-PCNL for patients who require an ipsilateral/contralateral endourological procedure (URS/RIRS) because it is time-efficient. All renal accesses are safe. Single MCA is recommended for complete stone clearance.

2.
Article in English | MEDLINE | ID: mdl-38981855

ABSTRACT

BACKGROUND AND AIM: Insomnia has been implicated in gastrointestinal diseases (GIs), but the causal effect between insomnia and GIs and underlying mechanisms remain unknown. METHODS: By using the released summary-level data, we conducted a two-step Mendelian randomization (MR) analysis to examine the relationship between insomnia and four GIs and estimate the mediating role of candidate mediators. The first step was to investigate the causal association between insomnia and GIs using univariable MR analysis. The second step was to estimate the mediation proportion of selected mediators in these associations using multivariable MR analysis. Subsequently, results from different datasets were combined using the fixed-effect meta-analysis. RESULTS: Univariable MR analysis provided strong evidence for the causal effects of insomnia on four GIs after Bonferroni correction for multiple comparisons, including peptic ulcer disease (PUD) (odds ratio [OR] = 1.15, 95% interval confidence [CI] = 1.10-1.20, P = 1.83 × 10-9), gastroesophageal reflux (GORD) (OR = 1.19, 95% CI = 1.16-1.22, P = 5.95 × 10-42), irritable bowel syndrome (IBS) (OR = 1.18, 95% CI = 1.15-1.22, P = 8.69 × 10-25), and inflammatory bowel disease (IBD) (OR = 1.09, 95% CI = 1.03-1.05, P = 3.46 × 10-3). In the mediation analysis, body mass index (BMI) and waist-to-hip ratio (WHR) were selected as mediators in the association between insomnia and PUD (BMI: mediation proportion [95% CI]: 13.61% [7.64%-20.70%]; WHR: 8.74% [5.50%-12.44%]) and GORD (BMI: 11.82% [5.94%-18.74%]; WHR: 7.68% [4.73%-11.12%]). CONCLUSIONS: Our findings suggest that genetically instrumented insomnia has causal effects on PUD, GORD, IBS, and IBD, respectively. Adiposity traits partially mediated the associations between insomnia and GIs. Further clinical studies are warranted to evaluate the protective effect of insomnia treatment on GIs.

3.
World J Psychiatry ; 14(5): 635-643, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38808078

ABSTRACT

Depression, a common mental illness, seriously affects the health of individuals and has deleterious effects on society. The prevention and treatment of depression has drawn the attention of many researchers and has become an important social issue. The treatment strategies for depression include drugs, psychotherapy, and physiotherapy. Drug therapy is ineffective in some patients and psychotherapy has treatment limitations. As a reliable adjuvant therapy, physiotherapy compensates for the shortcomings of drug and psychotherapy and effectively reduces the disease recurrence rate. Physiotherapy is more scientific and rigorous, its methods are diverse, and to a certain extent, provides more choices for the treatment of depression. Physiotherapy can relieve symptoms in many ways, such as by improving the levels of neurobiochemical molecules, inhibiting the inflammatory response, regulating the neuroendocrine system, and increasing neuroplasticity. Physiotherapy has biological effects similar to those of antidepressants and may produce a superimposed impact when combined with other treatments. This article summarizes the findings on the use of physiotherapy to treat patients with depression over the past five years. It also discusses several methods of physiotherapy for treating depression from the aspects of clinical effect, mechanism of action, and disadvantages, thereby serving as a reference for the in-depth development of physiotherapy research.

4.
Dig Dis Sci ; 69(6): 2109-2122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564148

ABSTRACT

BACKGROUND: Cholesterol ester storage disorder (CESD; OMIM: 278,000) was formerly assumed to be an autosomal recessive allelic genetic condition connected to diminished lysosomal acid lipase (LAL) activity due to LIPA gene abnormalities. CESD is characterized by abnormal liver function and lipid metabolism, and in severe cases, liver failure can occur leading to death. In this study, one Chinese nonclassical CESD pedigree with dominant inheritance was phenotyped and analyzed for the corresponding gene alterations. METHODS: Seven males and eight females from nonclassical CESD pedigree were recruited. Clinical features and LAL activities were documented. Whole genome Next-generation sequencing (NGS) was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations, and qPCR detected LIPA mRNA expression. RESULTS: Eight individuals of the pedigree were speculatively thought to have CESD. LAL activity was discovered to be lowered in four living members of the pedigree, but undetectable in the other four deceased members who died of probable hepatic failure. Three of the four living relatives had abnormal lipid metabolism and all four had liver dysfunctions. By liver biopsy, the proband exhibited diffuse vesicular fatty changes in noticeably enlarged hepatocytes and Kupffer cell hyperplasia. Surprisingly, only a newly discovered heterozygous mutation, c.1133T>C (p. Ile378Thr) on LIPA, was found by gene sequencing in the proband. All living family members who carried the p.I378T variant displayed reduced LAL activity. CONCLUSIONS: Phenotypic analyses indicate that this may be an autosomal dominant nonclassical CESD pedigree with a LIPA gene mutation.


Subject(s)
Cholesterol Ester Storage Disease , Heterozygote , Pedigree , Sterol Esterase , Humans , Male , Female , Cholesterol Ester Storage Disease/genetics , Cholesterol Ester Storage Disease/diagnosis , Sterol Esterase/genetics , Adult , Mutation , Genes, Dominant , Middle Aged , Phenotype , Adolescent , Child
5.
Psychol Med ; : 1-11, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563283

ABSTRACT

BACKGROUND: The comorbidity between schizophrenia (SCZ) and inflammatory bowel disease (IBD) observed in epidemiological studies is partially attributed to genetic overlap, but the magnitude of shared genetic components and the causality relationship between them remains unclear. METHODS: By leveraging large-scale genome-wide association study (GWAS) summary statistics for SCZ, IBD, ulcerative colitis (UC), and Crohn's disease (CD), we conducted a comprehensive genetic pleiotropic analysis to uncover shared loci, genes, or biological processes between SCZ and each of IBD, UC, and CD, independently. Univariable and multivariable Mendelian randomization (MR) analyses were applied to assess the causality across these two disorders. RESULTS: SCZ genetically correlated with IBD (rg = 0.14, p = 3.65 × 10−9), UC (rg = 0.15, p = 4.88 × 10−8), and CD (rg = 0.12, p = 2.27 × 10−6), all surpassed the Bonferroni correction. Cross-trait meta-analysis identified 64, 52, and 66 significantly independent loci associated with SCZ and IBD, UC, and CD, respectively. Follow-up gene-based analysis found 11 novel pleiotropic genes (KAT5, RABEP1, ELP5, CSNK1G1, etc) in all joint phenotypes. Co-expression and pathway enrichment analysis illustrated those novel genes were mainly involved in core immune-related signal transduction and cerebral disorder-related pathways. In univariable MR, genetic predisposition to SCZ was associated with an increased risk of IBD (OR 1.11, 95% CI 1.07­1.15, p = 1.85 × 10−6). Multivariable MR indicated a causal effect of genetic liability to SCZ on IBD risk independent of Actinobacteria (OR 1.11, 95% CI 1.06­1.16, p = 1.34 × 10−6) or BMI (OR 1.11, 95% CI 1.04­1.18, p = 1.84 × 10−3). CONCLUSIONS: We confirmed a shared genetic basis, pleiotropic loci/genes, and causal relationship between SCZ and IBD, providing novel insights into the biological mechanism and therapeutic targets underlying these two disorders.

6.
Cell Biosci ; 14(1): 54, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678227

ABSTRACT

BACKGROUND: Extensive hepatocyte mortality and the absence of specific medical therapy significantly contribute to the unfavorable prognosis of acute liver failure (ALF). Ferroptosis is a crucial form of cell death involved in ALF. In this study, we aimed to determine the impact of Mediator complex subunit 1 (Med1) on ferroptosis and its potential hepatoprotective effects in ALF. RESULTS: Med1 expression is diminished in the liver of lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced ALF mice, as well as in hepatocytes damaged by H2O2 or TNF-α/D-GalN in vitro. Med1 overexpression mitigates liver injury and decreases the mortality rate of ALF mice by ferroptosis inhibition. The mechanism by which Med1 inhibits erastin-induced ferroptosis in hepatocytes involves the upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant genes heme oxygenase-1 (HO-1), glutamate cysteine ligase catalytic (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1). Furthermore, Med1 overexpression suppresses the transcription of proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver of mice with LPS/D-GalN-induced ALF. CONCLUSION: Overall, our research findings indicate that Med1 suppresses ferroptosis and alleviates liver injury in LPS/D-GalN-induced ALF through the activation of Nrf2. These findings substantiate the therapeutic viability of targeting the Med1-Nrf2 axis as a means of treating individuals afflicted with ALF.

7.
Article in English | MEDLINE | ID: mdl-38482593

ABSTRACT

BACKGROUND: Previous observational studies have indicated a bidirectional association between metabolic syndrome (MetS) and osteoarthritis (OA). However, it remains unclear whether these bidirectional associations reflect causal relationships or shared genetic factors, and the underlying biological mechanisms of this association are not fully understood. METHODS: Leveraging summary statistics from genome-wide association studies (GWASs) conducted by the UK Biobank and the Glucose and Insulin-related Traits Consortium (MAGIC), we performed global genetic correlation analyses, genome-wide cross-trait meta-analyses, and a bidirectional two-sample Mendelian randomization analyses using summary statistics from GWASs to comprehensively assess the relationship of MetS and OA. RESULTS: We first detected an extensive genetic correlation between MetS and OA (rg=0.393, P=1.52×10-18), which was consistent in four MetS components, including waist circumference, triglycerides, hypertension and high-density lipoprotein cholesterol and OA with rg ranging from -0.229 to 0.490. We then discovered 32 variants jointly associated with MetS and OA through multi-trait Analysis of GWAS. Co-localization analysis founded 12 genes shared between MetS and OA, with functional implications in several biological pathways. Finally, MR analysis suggested genetic liability to MetS significantly increased the risk of OA, but no reverse causality was found. CONCLUSION: Our results illustrate a common genetic architecture, pleiotropic loci, as well as causality between MetS and OA, potentially enhancing our knowledge of high comorbidity and genetic processes that overlap between the two disorders.

8.
Mol Psychiatry ; 29(3): 838-846, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233469

ABSTRACT

Previous studies have shown that excessive alcohol consumption is associated with poor sleep. However, the health risks of light-to-moderate alcohol consumption in relation to sleep traits (e.g., insomnia, snoring, sleep duration and chronotype) remain undefined, and their causality is still unclear in the general population. To identify the association between alcohol consumption and multiple sleep traits using an observational and Mendelian randomization (MR) design. Observational analyses and one-sample MR (linear and nonlinear) were performed using clinical and individual-level genetic data from the UK Biobank (UKB). Two-sample MR was assessed using summary data from genome-wide association studies from the UKB and other external consortia. Phenotype analyses were externally validated using data from the National Health and Nutrition Examination Survey (2017-2018). Data analysis was conducted from January 2022 to October 2022. The association between alcohol consumption and six self-reported sleep traits (short sleep duration, long sleep duration, chronotype, snoring, waking up in the morning, and insomnia) were analysed. This study included 383,357 UKB participants (mean [SD] age, 57.0 [8.0] years; 46% male) who consumed a mean (SD) of 9.0 (10.0) standard drinks (one standard drink equivalent to 14 g of alcohol) per week. In the observational analyses, alcohol consumption was significantly associated with all sleep traits. Light-moderate-heavy alcohol consumption was linearly linked to snoring and the evening chronotype but nonlinearly associated with insomnia, sleep duration, and napping. In linear MR analyses, a 1-SD (14 g) increase in genetically predicted alcohol consumption was associated with a 1.14-fold (95% CI, 1.07-1.22) higher risk of snoring (P < 0.001), a 1.28-fold (95% CI, 1.20-1.37) higher risk of evening chronotype (P < 0.001) and a 1.24-fold (95% CI, 1.13-1.36) higher risk of difficulty waking up in the morning (P < 0.001). Nonlinear MR analyses did not reveal significant results after Bonferroni adjustment. The results of the two-sample MR analyses were consistent with those of the one-sample MR analyses, but with a slightly attenuated overall estimate. Our findings suggest that even low levels of alcohol consumption may affect sleep health, particularly by increasing the risk of snoring and evening chronotypes. The negative effects of alcohol consumption on sleep should be made clear to the public in order to promote public health.


Subject(s)
Alcohol Drinking , Biological Specimen Banks , Genome-Wide Association Study , Mendelian Randomization Analysis , Sleep Initiation and Maintenance Disorders , Sleep , Humans , Mendelian Randomization Analysis/methods , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Male , United Kingdom/epidemiology , Female , Middle Aged , Sleep/genetics , Sleep/physiology , Aged , Sleep Initiation and Maintenance Disorders/genetics , Sleep Initiation and Maintenance Disorders/epidemiology , Snoring/genetics , Snoring/epidemiology , Adult , Phenotype , Sleep Wake Disorders/genetics , Sleep Wake Disorders/epidemiology , Polymorphism, Single Nucleotide/genetics , UK Biobank
9.
Intern Emerg Med ; 19(2): 365-375, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38036801

ABSTRACT

The morbidity and mortality of cardiovascular disease (CVD) rank first among common diseases. Arteriosclerosis and diabetes are risk factors for CVDs, which influence each other. However, their combined effects on CVDs are still unclear. In this study, people who participated in brachial-ankle pulse wave velocity (baPWV) testing and the annual physical examination of the Kailuan Group Finance Co., Ltd., from January 1, 2010, to December 31, 2020, were selected, and their anthropometric, biochemical and epidemiological data were collected. The participants were divided into four groups according to diabetes and arteriosclerosis diagnosis and follow-up. Cox proportional hazards regression and subdistribution hazard models were used to analyse the combined effects of arteriosclerosis and diabetes on CVDs. Multiple sensitivity analyses were also performed. A total of 59,268 Asian populations were selected, including 14,425 females (28.11%) with an average age of 48.10 (± 12.72) years. During follow-up, 1830 subjects developed CVDs (mean follow-up period, 4.72 years). The cumulative incidence rates of the healthy control, diabetes, arteriosclerosis, and comorbidity groups were 5.04% (807/38781), 15.17% (253/3860), 17.04% (465/5987), and 25.59% (305/2684), respectively. The results of multivariate Cox regression analysis showed that compared with the healthy control group, the risk of CVD in the diabetes, arteriosclerosis, and comorbidity groups was significantly increased. Their HR values were 1.88 (95% CI 1.62-2.18), 1.40 (95% CI 1.23-1.60), and 2.10 (95% CI 1.80-2.45), respectively. The results of the sensitivity analysis were robust. For each one standard increase in fasting blood glucose or baPWV, the HR values for CVDs were 1.16 (95% CI 1.12-1.20) and 1.22 (95% CI 1.16-1.28), respectively. The results indicated that both arteriosclerosis and diabetes lead to an increased risk of CVDs. The risk of CVDs, coronary atherosclerotic heart disease, heart failure, stroke, coronary artery bypass grafting and ischemic stroke in patients with arteriosclerosis and diabetes was significantly higher than that in patients with arteriosclerosis or diabetes alone. Therefore, the primary prevention of CVDs in patients with arteriosclerosis complicated with diabetes needs more attention.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Artery Disease , Diabetes Mellitus , Female , Humans , Middle Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Ankle Brachial Index , Pulse Wave Analysis/adverse effects , Atherosclerosis/complications , Risk Factors , Diabetes Mellitus/epidemiology , Coronary Artery Disease/complications
10.
J Affect Disord ; 348: 167-174, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38154582

ABSTRACT

BACKGROUND AND AIMS: The comorbidity between bipolar disorder (BD) and inflammatory bowel disease (IBD) has been widely reported in observational studies. However, unclear whether this comorbidity reflects a shared genetic architecture. METHODS: Leveraging large-scale genome-wide association study (GWAS) summary statistics of BD, IBD and its subtypes, ulcerative colitis (UC) and Crohn's disease (CD), we performed a genome-wide pleiotropic analysis to estimate heritability and genetic correlation, identify pleiotropy loci/genes, and explore the shared biological pathway. Mendelian randomization (MR) studies were subsequently employed to infer whether the potential causal relationship is present. RESULTS: We found a positive significant genetic correlation between BD and IBD (rg = 0.10, P = 7.00 × 10-4), UC (rg = 0.09, P = 2.90 × 10-3), CD (rg = 0.08, P = 6.10 × 10-3). In cross-trait meta-analysis, a total of 29, 24, and 23 independent SNPs passed the threshold for significant association between BD and IBD, UC, and CD, respectively. We identified five novel pleiotropy genes including ZDHHC2, SCRN1, INPP4B, C1orf123, and BRD3 in both BD and IBD, as well as in its subtypes UC and CD. Pathway enrichment analyses revealed that those pleiotropy genes were mainly enriched in several immune-related signal transduction pathways and cerebral disease-related pathways. MR analyses provided no evidence for a causal relationship between BD and IBD. CONCLUSION: Our findings corroborated that shared genetic basis and common biological pathways may explain the comorbidity of BD and IBD. These findings further our understanding of shared genetic mechanisms underlying BD and IBD, and potentially provide points of intervention that may allow the development of new therapies for these co-occurrent disorders.


Subject(s)
Bipolar Disorder , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Colitis, Ulcerative/genetics , Crohn Disease/epidemiology , Crohn Disease/genetics , Genome-Wide Association Study , Inflammatory Bowel Diseases/genetics , Mendelian Randomization Analysis , Nerve Tissue Proteins
11.
Shanghai Kou Qiang Yi Xue ; 32(4): 385-390, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38044732

ABSTRACT

PURPOSE: To investigate the expression of tissue-active protein kinase C receptor 1 (RACK1) and epithelin glycoprotein 40 (EGP40) in oral squamous cell carcinoma (OSCC) and their relationship with clinicopathological features and prognosis. METHODS: A total of 103 patients with OSCC who were admitted to Shangrao People's Hospital from January 2016 to February 2019 were prospectively selected as the research subjects. All patients underwent radical resection of OSCC and were followed up for 3 years. Immunohistochemistry was used to detect the positive expression levels of RACK1 and EGP40 in cancer tissues and adjacent tissues. The positive expression of RACK1 and EGP40 in cancer tissues and adjacent tissues were compared. The relationship between the positive expression level of RACK1 and EGP40 in cancer tissues of OSCC patients and clinicopathological parameters was analyzed. Factors affecting postoperative recurrence and metastasis in OSCC patients were analyzed. The relationship between the expression of RACK1 and EGP40 in cancer tissues and postoperative disease-free survival of OSCC patients was analyzed. SPSS 18.0 software package was used for statistical analysis of the data. RESULTS: The positive expression rate of RACK1 and EGP40 in cancer tissues was significantly higher than those in adjacent tissues (P<0.05). The positive expression rate of RACK1 and EGP40 in cancer tissues of OSCC patients with poorly differentiated, stage III, cervical lymph node metastasis, and infiltrating vessels was significantly higher than that in patients with moderate and high differentiation, stage II, no cervical lymph node metastasis, and no infiltrating vessels(P<0.05). The positive expression rate of RACK1 in cancer tissue of OSCC patients in T3 stage was significantly higher than that in T2 stage(P<0.05). Cox multivariate regression analysis showed pathological grade (RR=6.290, 95%CI: 2.588-15.287), cervical lymph node metastasis(RR=5.995, 95%CI: 2.467-14.571), RACK1 positive rate (RR=4.495, 95%CI: 1.850-10.925) and EGP40 positive rate (RR=4.559, 95%CI: 1.876-11.079) were factors affecting the recurrence and metastasis of OSCC patients after surgery(P<0.05). The disease-free survival curve of patients with negative expression of RACK1 was significantly better than that of patients with positive expression (P<0.05). The disease-free survival curve of patients with negative expression of EGP40 was significantly better than that of patients with positive expression (P<0.05). CONCLUSIONS: The expression of RACK1 and EGP40 in cancer tissues of OSCC patients is related to clinicopathological parameters and prognosis. Patients with positive expression of RACK1 and EGP40 have a high risk of recurrence and metastasis after surgery.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Granulins , Lymphatic Metastasis , Mouth Neoplasms/surgery , Mouth Neoplasms/pathology , Neoplasm Proteins/metabolism , Prognosis , Receptors for Activated C Kinase/metabolism , Squamous Cell Carcinoma of Head and Neck
12.
Genomics ; 115(6): 110737, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37926353

ABSTRACT

BACKGROUND: Acute-on-chronic liver failure (ACLF) is a major challenge in the field of hepatology. While mesenchymal stem cell (MSC) therapy can improve the prognosis of patients with ACLF, the molecular mechanisms through which MSCs attenuate ACLF remain poorly understood. We performed global miRNA and mRNA expression profiling via next-generation sequencing of liver tissues from MSC-treated ACLF mice to identify important signaling pathways and major factors implicated in ACLF alleviation by MSCs. METHODS: Carbon tetrachloride-induced ACLF mice were treated with saline or mouse bone marrow-derived MSCs. Mouse livers were subjected to miRNA and mRNA sequencing. Related signal transduction pathways were obtained through Gene Set Enrichment Analysis. Functional enrichment, protein-protein interaction, and immune infiltration analyses were performed for the differentially expressed miRNA target genes (DETs). Hub miRNA and mRNA associated with liver injury were analyzed using LASSO regression. The expression levels of hub genes were subjected to Pearson's correlation analysis and verified using RT-qPCR. The biological functions of hub genes were verified in vitro. RESULTS: The tricarboxylic acid cycle and peroxisome proliferator-activated receptor pathways were activated in the MSC-treated groups. The proportions of liver-infiltrating NK resting cells, M2 macrophages, follicular helper T cells, and other immune cells were altered after MSC treatment. The expression levels of six miRNAs and 10 transcripts correlated with the degree of liver injury. miR-27a-5p was downregulated in the mouse liver after MSC treatment, while its target gene E2f2 was upregulated. miR-27a-5p inhibited E2F2 expression, suppressed G1/S phase transition and proliferation of hepatocytes, in addition to promoting their apoptosis. CONCLUSIONS: This is the first comprehensive analysis of miRNA and mRNA expression in the liver tissue of ACLF mice after MSC treatment. The results revealed global changes in hepatic pathways and immune subpopulations. The miR-27a-5p/E2F2 axis emerged as a central regulator of the MSC-induced attenuation of ACLF. The current findings improve our understanding of the molecular mechanisms through which MSCs alleviate ACLF.


Subject(s)
Acute-On-Chronic Liver Failure , Mesenchymal Stem Cells , MicroRNAs , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Acute-On-Chronic Liver Failure/genetics , Acute-On-Chronic Liver Failure/therapy , Acute-On-Chronic Liver Failure/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mesenchymal Stem Cells/metabolism
13.
Food Res Int ; 173(Pt 2): 113415, 2023 11.
Article in English | MEDLINE | ID: mdl-37803753

ABSTRACT

Banana fruit is highly vulnerable to chilling injury (CI) during cold storage, which results in quality deterioration and commodity reduction. The purpose of this study was to investigate the membrane lipid metabolism mechanism underlying low temperature-induced CI in banana fruit. Chilling temperature significantly induced CI symptoms in banana fruit, compared to control temperature (22 °C). Using physiological experiments and transcriptomic analyses, we found that chilling temperature (7 °C) increased CI index, malondialdehyde content, and cell membrane permeability. Additionally, chilling temperature upregulated the genes encoding membrane lipid-degrading enzymes, such as lipoxygenase (LOX), phospholipase D (PLD), phospholipase C (PLC), phospholipase A (PLA), and lipase, but downregulated the genes encoding fatty acid desaturase (FAD). Moreover, chilling temperature raised the activities of LOX, PLD, PLC, PLA, and lipase, inhibited FAD activity, lowered contents of unsaturated fatty acids (USFAs) (γ-linolenic acid and linoleic acid), phosphatidylcholine, and phosphatidylinositol, but retained higher contents of saturated fatty acids (SFAs) (stearic acid and palmitic acid), free fatty acids, phosphatidic acid, lysophosphatidic acid, diacylglycerol, a lower USFAs index, and a lower ratio of USFAs to SFAs. Together, these results revealed that chilling temperature-induced chilling injury of bananas were caused by membrane integrity damage and were associated with the enzymatic and genetic manipulation of membrane lipid metabolism. These activities promoted the degradation of membrane phospholipids and USFAs in fresh bananas during cold storage.


Subject(s)
Fruit , Musa , Fruit/chemistry , Membrane Lipids/analysis , Membrane Lipids/metabolism , Musa/metabolism , Food Storage/methods , Fatty Acids/analysis , Fatty Acids, Unsaturated/analysis , Lipase/metabolism , Polyesters/analysis
15.
Stem Cells ; 41(12): 1171-1184, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37659098

ABSTRACT

Acute-on-chronic liver failure (ACLF) is a severe disease with a high mortality. Macrophage-related inflammation plays a crucial role in ACLF development. Mesenchymal stem cells (MSCs) treatment was demonstrated to be beneficial in ACLF in our previous study; however, the underlying mechanisms remain unknown. Therefore, mouse bone marrow-derived MSCs were used to treat an ACLF mouse model or cocultured with RAW264.7/J774A.1 macrophages that were stimulated with LPS. Histological and serological parameters and survival were analyzed to evaluate efficacy. We detected changes of Mer tyrosine kinase (Mertk), JAK1/STAT6, inflammatory cytokines, and markers of macrophage polarization in vitro and in vivo. In ACLF mice, MSCs improved liver function and 48-h survival of ACLF mice and alleviated inflammatory injury by promoting M2 macrophage polarization and elevated Mertk expression levels in macrophages. This is significant, as Mertk regulates M2 macrophage polarization via the JAK1/STAT6 signaling pathway.


Subject(s)
Acute-On-Chronic Liver Failure , Mesenchymal Stem Cells , Mice , Animals , Acute-On-Chronic Liver Failure/metabolism , Protein-Tyrosine Kinases/metabolism , Macrophages/metabolism , Signal Transduction , Mesenchymal Stem Cells/metabolism , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism
16.
Article in English | MEDLINE | ID: mdl-37493819

ABSTRACT

The mammalian target of rapamycin (mTOR) is a key regulatory molecular target to treat cancer, and MTI-31 is a potent mTOR inhibitory agent for the therapeutically target of the renal cell carcinoma (RCC). However, the therapeutic efficacy of MTI-31 is limited by multiple factors, including autophagy. MTI-31 can activate cells to generate autophagy, which may in turn indirectly affect cell proliferation and apoptosis. We aimed to observe changes in cell protective autophagy via the ERK pathway and explore the potential mechanism underlying drug resistance of RCC cells to MTI-31. Different concentrations of 786-O and RCC4 cells were co-cultured with MTI-31 for distinct durations. The result of autophagy marker detection by Western blot showed that MTI-31 could induce RCC cells to produce autophagy in a dose and time-dependent manner. After treating the RCC cells with the autophagy inhibitor chloroquine (CQ), CCK8 and Western blot assays demonstrated that CQ could effectively enhance cell apoptosis induced by MTI-31 and that the autophagy induced by MTI-31 was cytoprotective. In addition, CCK8 and Western blot demonstrated that MTI-31 exerted its effect by activating the ERK pathway rather than the JNK or p38 pathway. The use of the ERK inhibitor AZD6244 to block the ERK pathway could effectively promote cell apoptosis induced by MTI-31. AZD6244 attenuated the autophagy induced by MTI-31 and increased the cytotoxicity of MTI-31. Western blot also demonstrated that MTI-31-induced autophagy was mediated by the downstream regulators of ERK pathways, including Beclin-1 and Bcl-2. It demonstrated that the MTI-31 mediated activation ERK pathway is associated with the induction of autophagy, and autophagy can attenuate the cytotoxicity of MTI-31 on RCC cells. In summary, inhibition of ERK pathway-mediated autophagy can rectify drug resistance to MTI-31 effectively.

17.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 231-239, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-36949678

ABSTRACT

The incidence of insomnia has been increasing in recent years. In addition, due to the impact of the COVID-19 pandemic, more and more people are experiencing a variety of insomniac problems, including having difficulty in sleep initation, waking up too early, and short sleep duration. Chronic insomnia may seriously affect patients' life and work, increase their risks of developing physical and mental illnesses, and cause crushing social and economic burdens. Sedative-hypnotics, including benzodiazepine agonists, melatonin receptor agonists, orexin receptor antagonists, and antidepressants with hypnotic effects, are widely used to treat most patients suffering from insomnia. However, there is the phenomenon of the non-medical use and abuse of sedative-hypnotic drugs, especially benzodiazepine receptor agonists. The abuse of sedative-hypnotic drugs may lead to mental and physical dependence, cognitive impairment, depression and anxiety, as well as an increased risks of falls and death. Therefore, drug regulatory authorities in China and other countries have issued relevant policies to reinforce regulation. Herein, we reviewed the prevalent use and safety of sedative-hypnotic drugs and proposed suggestions concerning their appropriate use. Both the efficacy and safety of sedative-hypnotic drugs should be carefully considered so that patients suffering from insomnia receive thorough and prompt treatment and the problem of potential abuse of sedative-hypnotic drugs is assessed in an objective and scientific manner. We also hope to provide references for the standardized clinical use of insomnia drugs.


Subject(s)
COVID-19 , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/drug therapy , Pandemics , Hypnotics and Sedatives/adverse effects , Sleep
18.
Exp Parasitol ; 249: 108503, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36925097

ABSTRACT

Trichinella spiralis is a zoonotic parasite with worldwide distribution that can seriously harm human health and animal husbandry. Ornithine decarboxylase is a component of the acid resistance (AR) system in Escherichia coli. The aim of this study was to investigate the role that T. spiralis ornithine decarboxylase (TsODC) plays in the acid resistance mechanism of T. spiralis. This study involved assessing the transcription and expression of TsODC in worms under acidic conditions. According to mRNA sequences published by NCBI and the results of molecular biology experiments, the complete TsODC sequence was cloned and expressed. rTsODC had good immunogenicity, and immunofluorescence analysis revealed that TsODC was principally localized on the surface tissues of the nematode, especially at the head and tail. qRT‒PCR and Western blotting analysis indicated that the relative expression levels of TsODC mRNA and protein were highest when cultured at pH 2.5 for 2 h. The muscle larvae (ML) of T. spiralis were treated with curcumin and rapamycin, as well as arginine and TsODC polyantisera. The expression levels of TsODC mRNA and protein were significantly increased by arginine and suppressed by curcumin and rapamycin. After reducing the amount of TsODC, the relative expression of TsODC mRNA and the survival rate of T. spiralis ML were both reduced when compared to these values in the phosphate-buffered saline (PBS) group. The results indicated that TsODC is a member of the T. spiralis AR system and different treatments on TsODC have different effects; thus, these treatments might be a new way to prevent T. spiralis infection.


Subject(s)
Curcumin , Trichinella spiralis , Trichinellosis , Animals , Humans , Trichinellosis/parasitology , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Antigens, Helminth/genetics , Helminth Proteins/genetics , Larva/metabolism
19.
Orthop Surg ; 15(5): 1325-1332, 2023 May.
Article in English | MEDLINE | ID: mdl-36919913

ABSTRACT

OBJECTIVE: Gastrointestinal dysfunction seriously affects the prognosis and quality of life of patients with multiple fractures. However, experimental evidence of this relationship is lacking. Here we describe a newly developed mouse model of postoperative gastrointestinal dysfunction after multiple fractures. METHODS: Trauma severity was assessed using the injury severity score (ISS). Based on the ISS, a multiple fracture model was established in mice as follows: limb fractures with pelvic fractures and multiple rib fractures; limb fractures with multiple rib fractures; closed fracture of both forelegs with pelvic fracture and rib fractures; closed limb fractures; limb fracture with pelvic fracture; spinal fractures; hind leg fractures with pelvic fractures; pelvic fracture with multiple rib fractures; closed fracture of both fore legs with pelvic fracture; and closed fracture of both fore legs with multiple rib fractures. In each model group, gastrointestinal motility was assayed and the histopathology of the small intestine was examined. Western blot and immunohistochemical analyses of jejunal tissue were performed to detect c-kit protein expression, the level of which was compared with that of a control group. The results of ANOVA are expressed as mean ± standard deviation. RESULTS: In mice with multiple fractures, food intake was greatly reduced, consistent with histopathological evidence of an injured intestinal epithelium. The jejunal tissue of mice in groups a, c, f, and h was characterized by extensively necrotic and exfoliated intestinal mucosal epithelium and inflammatory cell infiltration in the lamina propria. In the gastrointestinal function assay, gastrointestinal motility was significantly reduced in groups a, b, c, f, and g; these group also had a higher ISS (p < 0.01). The expression of c-kit protein in groups with gastrointestinal dysfunction was significantly up-regulated (p < 0.001) compared with the control group. The close correlation between c-kit expression and the ISS indicated an influence of trauma severity on gastrointestinal motility. CONCLUSION: Gastrointestinal dysfunction after multiple fractures was successfully reproduced in a mouse model. In these mice, c-kit expression correlated with gastrointestinal tissue dysfunction and might serve as a therapeutic target.


Subject(s)
Fractures, Bone , Fractures, Closed , Fractures, Multiple , Interstitial Cells of Cajal , Multiple Trauma , Pelvic Bones , Rib Fractures , Spinal Fractures , Mice , Animals , Injury Severity Score , Proto-Oncogene Proteins c-kit , Quality of Life , Pelvic Bones/injuries , Retrospective Studies
20.
Acta Trop ; 241: 106869, 2023 May.
Article in English | MEDLINE | ID: mdl-36849092

ABSTRACT

Trichinella spiralis is a zoonotic parasite that infects most mammals, even humans. Glutamate decarboxylase (GAD) is an important enzyme in glutamate-dependent acid resistance system 2 (AR2), but the GAD of T. spiralis in AR2 is unclear. We aimed to investigate the role of T. spiralis glutamate decarboxylase (TsGAD) in AR2. We silenced the TsGAD gene to evaluate the AR of T. spiralis muscle larvae (ML) in vivo and in vitro via siRNA. The results showed that recombinant TsGAD was recognized by anti-rTsGAD polyclonal antibody (57 kDa), and qPCR indicated that TsGAD transcription peaked at pH 2.5 for 1 h compared to that with pH 6.6 phosphate-buffered saline. Indirect immunofluorescence assays revealed that TsGAD was expressed in the epidermis of ML. After TsGAD silencing in vitro, TsGAD transcription and the survival rate of ML decreased by 15.2% and 17%, respectively, compared with those of the PBS group. Both TsGAD enzymatic activity and the acid adjustment of siRNA1-silenced ML were weakened. In vivo, each mouse was orally infected with 300 siRNA1-silenced ML. On days 7 and 42 post-infection, the reduction rates of adult worms and ML were 31.5% and 49.05%, respectively. Additionally, the reproductive capacity index and larvae per gram of ML were 62.51±7.32 and 1250.22±146.48, respectively, lower than those of the PBS group. Haematoxylin-eosin staining revealed many inflammatory cells infiltrating the nurse cells in the diaphragm of mice infected with siRNA1-silenced ML. The survival rate of the F1 generation ML was 27% higher than that of the F0 generation ML, but there was no difference from the PBS group. These results first indicated that GAD plays a crucial role in AR2 of T. spiralis. TsGAD gene silencing reduced the worm burden in mice, providing data for the comprehensive study of the AR system of T. spiralis and a new idea for the prevention of trichinosis.


Subject(s)
Trichinella spiralis , Trichinellosis , Humans , Mice , Animals , RNA Interference , Glutamate Decarboxylase/genetics , RNA, Small Interfering/genetics , Larva , Mice, Inbred BALB C , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...