Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.070
Filter
1.
Cancer Med ; 13(14): e70011, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001676

ABSTRACT

OBJECTIVE: Immunotherapy, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer treatment. However, it can also cause immune-related adverse events (irAEs). This study aimed to develop a clinically practical animal model of irAEs using BALB/c mice. METHODS: Subcutaneous tumors of mouse breast cancer 4T1 cells were generated in inbred BALB/c mice. The mice were treated with programmed death-1 (PD-1) and cytotoxic t-lymphocyte antigen 4 (CTLA-4) inhibitors once every 3 days for five consecutive administration cycles. Changes in tumor volume and body weight were recorded. Lung computed tomography (CT) scans were conducted. The liver, lungs, heart, and colon tissues of the mice were stained with hematoxylin-eosin (H&E) staining to observe inflammatory infiltration and were scored. Serum samples were collected, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ferritin, glutamic-pyruvic transaminase (ALT), tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-6 (IL-6). Mouse liver and lung cell suspensions were prepared, and changes in macrophages, T cells, myeloid-derived suppressor cells (MDSCs), and regulatory (Treg) cells were detected by flow cytometry. RESULTS: Mice treated with PD-1 and CTLA-4 inhibitors showed significant reductions in tumor volume and body weight. The tissue inflammatory scores in the experimental group were significantly higher than those in the control group. Lung CT scans of mice in the experimental group showed obvious inflammatory spots. Serum levels of ferritin, IL-6, TNF-α, IFN-γ, and ALT were significantly elevated in the experimental group. Flow cytometry analysis revealed a substantial increase in CD3+T cells, Treg cells, and macrophages in the liver and lung tissues of mice in the experimental group compared with the control group, and the change trend of MDSCs was opposite. CONCLUSIONS: The irAE-related animal model was successfully established in BALB/c mice using a combination of PD-1 and CTLA-4 inhibitors through multiple administrations with clinical translational value and practical. This model offers valuable insights into irAE mechanisms for further investigation.


Subject(s)
Disease Models, Animal , Immune Checkpoint Inhibitors , Mice, Inbred BALB C , Animals , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Mice , Female , CTLA-4 Antigen/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Cell Line, Tumor
2.
Org Biomol Chem ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005158

ABSTRACT

The first amidation of carbazoles at the N9 position via palladium-catalyzed hydroamination of isocyanates is demonstrated. This simple, general and efficient method could deliver a wide range of carbazole-N-carboxamides in up to 99% yield. The salient features of this transformation include simple conditions with no need for a strong base, high chemo- and regio-selectivities and good functional group tolerance. In particular, this work-up-free and chromatography-free protocol is time-saving, cost-effective and user-friendly.

4.
MycoKeys ; 106: 303-325, 2024.
Article in English | MEDLINE | ID: mdl-38993357

ABSTRACT

Species of the family Microdochiaceae (Xylariales, Sordariomycetes) have been reported from worldwide, and collected from different plant hosts. The proposed new genus and two new species, viz., Macroidriella gen. nov., M.bambusae sp. nov. and Microdochiumaustrale sp. nov., are based on multi-locus phylogenies from a combined dataset of ITS rDNA, LSU, RPB2 and TUB2 with morphological characteristics. Microdochiumsinense has been collected from diseased leaves of Phragmitesaustralis and this is the first report of the fungus on this host plant. Simultaneously, we annotated 10,372 to 11,863 genes, identified 4,909 single-copy orthologous genes, and conducted phylogenomic analysis based on genomic data. A gene family analysis was performed and it will expand the understanding of the evolutionary history and biodiversity of the Microdochiaceae. The detailed descriptions and illustrations of species are provided.

5.
J Transl Med ; 22(1): 665, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020378

ABSTRACT

Metastatic breast cancer (mBC) poses a significant threat to women's health and is a major cause of malignant neoplasms in women. Human epidermal growth factor receptor (HER)3, an integral member of the ErbB/HER receptor tyrosine kinase family, is a crucial activator of the phosphoinositide-3 kinase/protein kinase B signaling pathway. HER3 overexpression significantly contributes to the development of resistance to drugs targeting other HER receptors, such as HER2 and epidermal growth factor receptors, and plays a crucial role in the onset and progression of mBC. Recently, numerous HER3-targeted therapeutic agents, such as monoclonal antibodies (mAbs), bispecific antibodies (bAbs), and antibody-drug conjugates (ADCs), have emerged. However, the efficacy of HER3-targeted mAbs and bAbs is limited when used individually, and their combination may result in toxic adverse effects. On the other hand, ADCs are cytotoxic to cancer cells and can bind to target cells through antibodies, which highlights their use in targeted HER3 therapy for mBC. This review provides an overview of recent advancements in HER3 research, historical initiatives, and innovative approaches in targeted HER3 therapy for metastatic breast cancer. Evaluating the advantages and disadvantages of current methods may yield valuable insights and lessons.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Receptor, ErbB-3 , Humans , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Receptor, ErbB-3/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Female , Animals
6.
Harm Reduct J ; 21(1): 135, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020418

ABSTRACT

BACKGROUND: Cannabidiol (CBD) is a widely available cannabis product with many claims as to potential health benefits including alleviating symptoms related to opioid use disorder (OUD). However, little is known as to how individuals with OUD perceive CBD, to what extent they may already be using CBD, and for what purposes. METHODS: A survey was conducted among individuals receiving treatment for OUD at the Addiction Institute of Mount Sinai in New York City from July 2021 to August 2023. The survey consisted of demographic questions, questions about opioid use, CBD use, and perceptions regarding CBD. Statistical analysis using ordinal logistic regression was employed to compare perceptions between CBD users and non-users while adjusting for age and race. RESULTS: Among 587 respondents, 550 completed the survey. Among all survey completers, 129 (23%) reported a history of using CBD for a variety of reasons including: anxiety (81, 62.8%), pain (65, 50.4%), sleep (63, 48.8%), depression (62, 48.1%), recreational purposes (32, 24.8%), or for other reasons (8, 6.2%). Of note, 22 (17.1%) respondents reported using CBD to control their addiction and 54 (41.9%) reported using CBD to ease opioid withdrawal symptoms. CBD users demonstrated more positive perceptions regarding its legality (ß = 0.673, OR = 1.960, 95% CI [1.211, 3.176], p = .006), social acceptance (ß = 0.718, OR = 2.051, 95% CI [1.257, 3.341], p = .004), and therapeutic potential compared to non-users. CBD users also had a more positive view of its potential future role in managing addiction (ß = 0.613, OR = 1.846, 95% CI [1.181, 2.887], p = .007). CONCLUSIONS: This study highlights a significant association between CBD usage and progressive views regarding CBD among individuals with OUD, suggesting a growing interest in CBD as a potential adjunctive therapy for individuals in substance use treatment. Some patients are already using CBD for anxiety, pain, sleep, depression, or as a harm reduction intervention to control their addiction or for opioid withdrawal symptoms. These findings underscore the importance of integrating patient perspectives into future research and treatment strategies involving CBD in the context of OUD.


Subject(s)
Cannabidiol , Opioid-Related Disorders , Humans , Cannabidiol/therapeutic use , Male , Female , Adult , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/psychology , Middle Aged , New York City , Young Adult , Surveys and Questionnaires , Health Knowledge, Attitudes, Practice
7.
Heliyon ; 10(12): e33233, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022010

ABSTRACT

As a complementary and alternative therapy, acupuncture is widely used in the prevention and treatment of various diseases. However, the understanding of the mechanism of acupuncture effects is still limited due to the lack of systematic biological validation. Notably, proteomics technologies in the field of acupuncture are rapidly evolving, and these advances are greatly contributing to the research of acupuncture. In this study, we review the progress of proteomics research in analyzing the molecular mechanisms of acupuncture for neurological disorders, pain, circulatory disorders, digestive disorders, and other diseases, with an in-depth discussion around acupoint prescription and acupuncture manipulation modalities. The study found that proteomics has great potential in understanding the mechanisms of acupuncture. This study will help explore the mechanisms of acupuncture from a proteomic perspective and provide information to support future clinical decisions.

8.
Aging Cell ; : e14264, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953594

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder with a distinct sex bias. Age-related vascular alterations, a hallmark of AD onset and progression, are consistently associated with sexual dimorphism. Here, we conducted an integrative meta-analysis of 335,803 single-nucleus transcriptomes and 667 bulk transcriptomes from the vascular system in AD and normal aging to address the underlying sex-dependent vascular aging in AD. All vascular cell types in male AD patients exhibited an activated hypoxia response and downstream signaling pathways including angiogenesis. The female AD vasculature is characterized by increased antigen presentation and decreased angiogenesis. We further confirmed that these sex-biased alterations in the cerebral vascular emerged and were primarily determined in the early stages of AD. Sex-stratified analysis of normal vascular aging revealed that angiogenesis and various stress-response genes were downregulated concurrently with female aging. Conversely, the hypoxia response increased steadily in males upon aging. An investigation of upstream driver transcription factors (TFs) revealed that altered communication between estrogen receptor alpha (ESR1) and hypoxia induced factors during menopause contributes to the inhibition of angiogenesis during normal female vascular aging. Additionally, inhibition of CREB1, a TF that targets estrogen, is also related to female AD. Overall, our study revealed a distinct cerebral vascular profile in females and males, and revealed novel targets for precision medicine therapy for AD.

9.
Int J Gen Med ; 17: 2791-2800, 2024.
Article in English | MEDLINE | ID: mdl-38962174

ABSTRACT

Purpose: Pain is a common yet undertreated symptom of Parkinson's disease (PD). This study investigated the effect of Gua Sha therapy on pain in patients with PD. Patients and Methods: A total of 56 PD patients with pain were randomized into either the experimental group (n=28), receiving 12 sessions of Gua Sha therapy, or the control group (n=28) without additional treatment. Participants underwent assessment at baseline, after the twelfth invention, and at the 2-month follow-up timepoints. The primary outcome was KPPS and VAS. Secondary outcomes included UPDRS I-III, PDSS-2, HADS, PDQ-39, and blood biomarkers (5-HT, IL-8, IL-10). Results: The experimental group reported a significant improvement in pain severity, motor functions, affective disorder, and sleep quality (P < 0.05). Furthermore, increasing trends in both 5-HT and IL-10, as well as decreasing trends in IL-8 were observed. No serious adverse events occurred. Conclusion: The preliminary findings suggest that Gua Sha therapy may be effective and safe for alleviating pain and improving other disease-related symptoms in PD patients.

10.
Biomed Environ Sci ; 37(6): 565-580, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988108

ABSTRACT

Objective: Genomic alterations and potential neoantigens for cervical cancer immunotherapy were identified in a cohort of Chinese patients with cervical squamous cell carcinoma (CSCC). Methods: Whole-exome sequencing was used to identify genomic alterations and potential neoantigens for CSCC immunotherapy. RNA Sequencing was performed to analyze neoantigen expression. Results: Systematic bioinformatics analysis showed that C>T/G>A transitions/transversions were dominant in CSCCs. Missense mutations were the most frequent types of somatic mutation in the coding sequence regions. Mutational signature analysis detected signature 2, signature 6, and signature 7 in CSCC samples. PIK3CA, FBXW7, and BICRA were identified as potential driver genes, with BICRA as a newly reported gene. Genomic variation profiling identified 4,960 potential neoantigens, of which 114 were listed in two neoantigen-related databases. Conclusion: The present findings contribute to our understanding of the genomic characteristics of CSCC and provide a foundation for the development of new biotechnology methods for individualized immunotherapy in CSCC.


Subject(s)
Carcinoma, Squamous Cell , Immunotherapy , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/immunology , Cohort Studies , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Middle Aged , Exome Sequencing , China , Mutation , Adult , Genomics , East Asian People
11.
Redox Biol ; 74: 103236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875958

ABSTRACT

The pathogenesis of epilepsy remains unclear; however, a prevailing hypothesis suggests that the primary underlying cause is an imbalance between neuronal excitability and inhibition. Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway, which is primarily involved in deoxynucleic acid synthesis and antioxidant defense mechanisms and exhibits increased expression during the chronic phase of epilepsy, predominantly colocalizing with neurons. G6PD overexpression significantly reduces the frequency and duration of spontaneous recurrent seizures. Furthermore, G6PD overexpression enhances signal transducer and activator of transcription 1 (STAT1) expression, thus influencing N-methyl-d-aspartic acid receptors expression, and subsequently affecting seizure activity. Importantly, the regulation of STAT1 by G6PD appears to be mediated primarily through reactive oxygen species signaling pathways. Collectively, our findings highlight the pivotal role of G6PD in modulating epileptogenesis, and suggest its potential as a therapeutic target for epilepsy.


Subject(s)
Glucosephosphate Dehydrogenase , Reactive Oxygen Species , Receptors, N-Methyl-D-Aspartate , STAT1 Transcription Factor , Seizures , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/genetics , Reactive Oxygen Species/metabolism , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Seizures/metabolism , Seizures/drug therapy , STAT1 Transcription Factor/metabolism , Epilepsy/metabolism , Epilepsy/drug therapy , Epilepsy/genetics , Signal Transduction/drug effects , Mice , Humans , Neurons/metabolism , Male , Rats , Disease Models, Animal
12.
Antioxidants (Basel) ; 13(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38929189

ABSTRACT

Cannabis sativa (C. sativa) leaves are rich in cannabinoids and flavonoids, which play important antioxidant roles. Since the environmental factors may influence the accumulation of antioxidants in herbal medicines, which affects their activity, this study aimed to investigate the correlation between the chemical composition of C. sativa leaves and their geographical origin and antioxidant activity. Firstly, a high-resolution mass spectrometry method assisted by semi-quantitative feature-based molecular networking (SQFBMN) was established for the characterization and quantitative analysis of C. sativa leaves from various regions. Subsequently, antioxidant activity analysis was conducted on 73 batches of C. sativa leaves, and a partial least squares regression (PLS) model was employed to assess the correlation between the content of cannabinoids and flavonoids in the leaves and their antioxidant activity. A total of 16 cannabinoids and 57 flavonoids were annotated from C. sativa, showing a significant regular geographical distribution. The content of flavonoid-C glycosides in Sichuan leaves is relatively high, and their antioxidant activity is also correspondingly high. However, the leaves in Shaanxi and Xinjiang were primarily composed of flavonoid-O glycosides, and exhibited slightly lower antioxidant activity. A significant positive correlation (p < 0.001) was found between the total flavonoids and cannabinoids and the antioxidant activity of the leaves, and two flavonoids and one cannabinoid were identified as significant contributors.

13.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38828664

ABSTRACT

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Subject(s)
Antioxidants , Cadmium , Chenopodium quinoa , Hydrogen Peroxide , Seedlings , gamma-Aminobutyric Acid , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Cadmium/metabolism , Cadmium/toxicity , Chenopodium quinoa/metabolism , Chenopodium quinoa/drug effects , Chenopodium quinoa/growth & development , gamma-Aminobutyric Acid/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Malondialdehyde/metabolism , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects
14.
Environ Res ; 257: 119250, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38844031

ABSTRACT

Aquatic ecosystems are being increasingly polluted by microplastics (MPs), which calls for an understanding of how MPs affect microbially driven biogenic element cycling in water environments. A 28-day incubation experiment was conducted using freshwater lake water added with three polymer types of MPs (i.e., polyethylene, polypropylene, polystyrene) separately or in combination at a concentration of 1 items/L. The effects of various MPs on microbial communities and functional genes related to carbon, nitrogen, phosphorus, and sulfur cycling were analyzed using metagenomics. Results showed that Sphingomonas and Novosphingobium, which were indicator taxa (genus level) in the polyethylene treatment group, made the largest functional contribution to biogenic element cycling. Following the addition of MPs, the relative abundances of genes related to methane oxidation (e.g., hdrD, frhB, accAB) and denitrification (napABC, nirK, norB) increased. These changes were accompanied by increased relative abundances of genes involved in organic phosphorus mineralization (e.g., phoAD) and sulfate reduction (cysHIJ), as well as decreased relative abundances of genes involved in phosphate transport (phnCDE) and the SOX system. Findings of this study underscore that MPs, especially polyethylene, increase the potential of greenhouse gas emissions (CO2, N2O) and water pollution (PO43-, H2S) in freshwater lakes at the functional gene level.


Subject(s)
Greenhouse Gases , Lakes , Metagenomics , Microplastics , Water Pollutants, Chemical , Lakes/microbiology , Lakes/chemistry , Greenhouse Gases/analysis , Microplastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Pollution/analysis , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/classification , Bacteria/metabolism
15.
Mol Cell ; 84(12): 2304-2319.e8, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38838666

ABSTRACT

Circular RNAs (circRNAs) are upregulated during neurogenesis. Where and how circRNAs are localized and what roles they play during this process have remained elusive. Comparing the nuclear and cytoplasmic circRNAs between H9 cells and H9-derived forebrain (FB) neurons, we identify that a subset of adenosine (A)-rich circRNAs are restricted in H9 nuclei but exported to cytosols upon differentiation. Such a subcellular relocation of circRNAs is modulated by the poly(A)-binding protein PABPC1. In the H9 nucleus, newly produced (A)-rich circRNAs are bound by PABPC1 and trapped by the nuclear basket protein TPR to prevent their export. Modulating (A)-rich motifs in circRNAs alters their subcellular localization, and introducing (A)-rich circRNAs in H9 cytosols results in mRNA translation suppression. Moreover, decreased nuclear PABPC1 upon neuronal differentiation enables the export of (A)-rich circRNAs, including circRTN4(2,3), which is required for neurite outgrowth. These findings uncover subcellular localization features of circRNAs, linking their processing and function during neurogenesis.


Subject(s)
Active Transport, Cell Nucleus , Adenosine , Cell Nucleus , Neurogenesis , Neurons , Poly(A)-Binding Protein I , RNA, Circular , RNA , RNA, Circular/metabolism , RNA, Circular/genetics , Neurons/metabolism , Adenosine/metabolism , Cell Nucleus/metabolism , Humans , Poly(A)-Binding Protein I/metabolism , Poly(A)-Binding Protein I/genetics , Animals , RNA/metabolism , RNA/genetics , Cell Line , Cell Differentiation , Cytoplasm/metabolism , Prosencephalon/metabolism
16.
Food Funct ; 15(14): 7567-7576, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38934729

ABSTRACT

Background: Gout is a nutrition-related, highly prevalent inflammatory arthritis with undesirable effects on the quality of life. The relationships between circulating fatty acids (FAs) and gout remain poorly understood. Method: We included 268 174 participants with plasma FAs measured using nuclear magnetic resonance at the baseline (2006-2010) from the UK Biobank, of which 15 194 participants had repeated measures of FAs between 2012 and 2013. Cox proportional hazards models were used to assess the association of the baseline and longitudinal changes in relative levels of plasma FAs (% total FAs) with incident gout. Mendelian randomization (MR) analyses were conducted to assess the potential causality of the examined association. Results: Over a median follow-up of 12.8 years, 5160 incident cases of gout occurred. Baseline polyunsaturated fatty acids (PUFAs), n-6 PUFAs, and linoleic acids (LAs) were inversely associated with incident gout (all P-trend values < 0.0001). Baseline monounsaturated fatty acids (MUFAs), n-3 PUFAs, and docosahexaenoic acids (DHAs) were positively associated with incident gout (all P-trend values < 0.0001). Longitudinal increments of n-6 PUFAs and LAs were associated with a lower risk of subsequent gout, whereas an increment of n-3 PUFAs was associated with a higher risk. In two-sample MR analyses, genetically determined higher levels of PUFAs, n-6 PUFAs, and LAs were associated with a decreased risk of gout (all P values < 0.05). Conclusions: Our findings consistently indicate a causal relationship of elevated levels of n-6 PUFAs, especially LAs, with a reduced risk of gout.


Subject(s)
Gout , Linoleic Acid , Humans , Gout/epidemiology , Gout/blood , Gout/genetics , Male , Female , Middle Aged , Risk Factors , Aged , Linoleic Acid/blood , Adult , Cohort Studies , Mendelian Randomization Analysis , United Kingdom/epidemiology , Fatty Acids, Unsaturated/blood
17.
Adv Mater ; : e2405170, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838950

ABSTRACT

High-entropy strategies are regarded as a powerful means to enhance performance in energy storage fields. The improved properties are invariably ascribed to entropy stabilization or synergistic cocktail effect. Therefore, the manifested properties in such multicomponent materials are usually unpredictable. Elucidating the precise correlations between atomic structures and properties remains a challenge in high-entropy materials (HEMs). Herein, atomic-resolution scanning transmission electron microscopy annular dark field (STEM-ADF) imaging and four dimensions (4D)-STEM are combined to directly visualize atomic-scale structural and electric information in high-entropy FeMnNiVZnPS3. Aperiodic stacking is found in FeMnNiVZnPS3 accompanied by high-density strain soliton boundaries (SSBs). Theoretical calculation suggests that the formation of such structures is attributed to the imbalanced stress of distinct metal-sulfur bonds in FeMnNiVZnPS3. Interestingly, the electric field concentrates along the two sides of SSBs and gradually diminishes toward the two-dimensional (2D) plane to generate a unique electric field gradient, strongly promoting the ion-diffusion rate. Accordingly, high-entropy FeMnNiVZnPS3 demonstrates superior ion-diffusion coefficients of 10-9.7-10-8.3 cm2 s-1 and high-rate performance (311.5 mAh g-1 at 30 A g-1). This work provides an alternative way for the atomic-scale understanding and design of sophisticated HEMs, paving the way for property engineering in multi-component materials.

18.
J Sci Food Agric ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873964

ABSTRACT

BACKGROUND: Chronic excessive alcohol consumption can lead to alcoholic fatty liver, posing substantial health risks. l-Theanine (LTA) and epigallocatechin gallate (EGCG) in tea exert antioxidant and hepatoprotective effects. However, the combined effects of LTA and EGCG on rats with alcoholic fatty liver, and the underlying mechanisms of such effects, remain unclear. In this study, Sprague Dawley (SD) rats were fed with alcohol for 6 weeks to induce alcoholic fatty liver. Subsequently, for another 6 weeks, the rats were administered LTA (200 mg kg-1 day-1), EGCG (200 mg kg-1 day-1), or a combination of LTA with EGCG (40 mg kg-1 day-1 l-Thea +160 mg kg-1 day-1 EGCG), respectively. RESULTS: The combined use of LTA and EGCG for alcoholic fatty liver disease had more significant effects than their individual administration. This combination reduced the activity of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) as well as the levels of hepatic triglyceride (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in the rats. The combined intervention also increased hepatic superoxide dismutase (SOD) and glutathione peroxidase activity. Reductions in hepatic fat accumulation and inflammatory responses were observed. The mechanism underlying these effects primarily involved the inhibition of fatty acid synthesis and the alleviation of lipid peroxidation through the downregulation of the mRNA and protein expression of TNF-α, SREBP1c, and CYP2E1 and the upregulation of the mRNA and protein expression of ADH1, ALDH2, Lipin-1, PPARαPPARα, AMPK, and PGC-1α, thereby promoting the oxidative decomposition of fatty acids and reducing the synthesis of cholesterol and glucose. CONCLUSION: l-Theanine and EGCG appear to be able to alleviate alcoholic fatty liver by modulating lipid metabolism and ameliorating oxidative stress, indicating their potential as natural active ingredients in anti-alcoholic fatty liver food products. © 2024 Society of Chemical Industry.

19.
Front Pharmacol ; 15: 1377079, 2024.
Article in English | MEDLINE | ID: mdl-38915473

ABSTRACT

The increasing prevalence of depression is a major societal burden. The etiology of depression involves multiple mechanisms. Thus, the outcomes of the currently used treatment for depression are suboptimal. The anti-depression effects of traditional Chinese medicine (TCM) formulations have piqued the interest of the scientific community owing to their multi-ingredient, multi-target, and multi-link characteristics. According to the TCM theory, the functioning of the kidney is intricately linked to that of the brain. Clinical observations have indicated the therapeutic potential of the kidney-tonifying formula Erxian Decoction (EXD) in depression. This review aimed to comprehensively search various databases to summarize the anti-depression effects of EXD, explore the underlying material basis and mechanisms, and offer new suggestions and methods for the clinical treatment of depression. The clinical and preclinical studies published before 31 August 2023, were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, and Wanfang Database. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Clinical studies have demonstrated that EXD exhibits therapeutic properties in patients with menopausal depression, postpartum depression, and maintenance hemodialysis-associated depression. Meanwhile, preclinical studies have reported that EXD and its special chemical markers exert anti-depression effects by modulating monoamine neurotransmitter levels, inhibiting neuroinflammation, augmenting synaptic plasticity, exerting neuroprotective effects, regulating the hypothalamic-pituitary-adrenal axis, promoting neurogenesis, and altering cerebrospinal fluid composition. Thus, the anti-depression effects of EXD are mediated through multiple ingredients, targets, and links. However, further clinical and animal studies are needed to investigate the anti-depression effects of EXD and the underlying mechanisms and offer additional evidence and recommendations for its clinical application. Moreover, strategies must be developed to improve the quality control of EXD. This review provides an overview of EXD and guidance for future research direction.

20.
Nat Commun ; 15(1): 5154, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886378

ABSTRACT

Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.


Subject(s)
Aging , Breast Neoplasms , Cellular Senescence , Female , Animals , Mice , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Humans , Mammary Glands, Animal/pathology , Mammary Glands, Animal/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...