Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 225: 112724, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34509162

ABSTRACT

Compared to other soil remediation technologies, Cd-contaminated farmland soil with low cadmium accumulation (LCA) plant-based safe utilization is more catered to developing countries with food in high demand. Hormesis, which describes the fortification of plant growth performance by a low level of environmental stress, can be innovatively used to achieve increases in crop yield and plant functional components, thus amplifying the safe utilization efficiency of low Cd-contaminated soil by LCA plants. In the present study, the growth and physiological responses of Polygonatum sibiricum, a traditional Chinese medicinal herb, were investigated under laboratory conditions of gradient Cd dosage concentrations and times. As a result, the growth performance of P. sibiricum reached the peak of an inverse U-shaped curve of hormesis under e0 mg kg-1 and 9 months of Cd stress, with elevations in tuber biomass (medicinal part), plant height and polysaccharide content (medicinal components) of 143%, 25% and 90%, respectively. Meanwhile, trace Cd accumulation (0.41 mg kg-1) in the tuber guaranteed medicinal edible safety. In addition, Cd-induced hormesis in P. sibiricum was verified to be overcompensated by antioxidation systems. In conclusion, such 'win-win' results, including low Cd accumulation and enhancement of plant pharmaceutical value, provided medicinal herbs with a possibility for safe soil utilization.


Subject(s)
Plants, Medicinal , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Cadmium/toxicity , Farms , Hormesis , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
2.
Ecotoxicol Environ Saf ; 195: 110520, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32213366

ABSTRACT

To decipher the Cd hyperaccumulation and tolerance mechanisms of plants and increase phytoremediation efficiency, in this study, the physiological effects induced by environmentally relevant concentrations (0, 25 and 200 mg/kg) of Cd were characterized in Amaranthus hypochondriacus (K472) at three growth stages using LC/MS-based metabolomics. Metabolomic analysis identified 31, 29 and 30 significantly differential metabolites (SDMs) in K472 exposed to Cd at the early, intermediate and late stages of vegetative growth, respectively. These SDMs are involved in nine metabolic pathways responsible for antioxidation, osmotic balance regulation, energy supplementation and the promotion of metabolites that participate in phytochelatin (PC) synthesis. K472 at the intermediate stage of vegetative growth had the strongest tolerance to Cd with the combined action of Ala, Asp and Glu metabolism, purine metabolism, Gly, Ser and Thr metabolism and Pro and Arg metabolism. Among these crucial metabolic biomarkers, purine metabolism could be the primary regulatory target for increasing the Cd absorption of K472 for the restoration of Cd-contaminated soil.


Subject(s)
Amaranthus/metabolism , Cadmium/analysis , Metabolic Networks and Pathways/drug effects , Soil Pollutants/analysis , Amaranthus/drug effects , Biodegradation, Environmental , Cadmium/metabolism , Inactivation, Metabolic , Metabolomics , Soil Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...