Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 233(1): 458-478, 2022 01.
Article in English | MEDLINE | ID: mdl-34655240

ABSTRACT

The molecular mechanisms of quantitative resistance (QR) to fungal pathogens and their relationships with growth pathways are poorly understood. We identified tomato TRK1 (TPK1b Related Kinase1) and determined its functions in tomato QR and plant growth. TRK1 is a receptor-like cytoplasmic kinase that complexes with tomato LysM Receptor Kinase (SlLYK1). SlLYK1 and TRK1 are required for chitin-induced fungal resistance, accumulation of reactive oxygen species, and expression of immune response genes. Notably, TRK1 and SlLYK1 regulate SlMYC2, a major transcriptional regulator of jasmonic acid (JA) responses and fungal resistance, at transcriptional and post-transcriptional levels. Further, TRK1 is also required for maintenance of proper meristem growth, as revealed by the ectopic meristematic activity, enhanced branching, and altered floral structures in TRK1 RNAi plants. Consistently, TRK1 interacts with SlCLV1 and SlWUS, and TRK1 RNAi plants show increased expression of SlCLV3 and SlWUS in shoot apices. Interestingly, TRK1 suppresses chitin-induced gene expression in meristems but promotes expression of the same genes in leaves. SlCLV1 and TRK1 perform contrasting functions in defense but similar functions in plant growth. Overall, through molecular and biochemical interactions with critical regulators, TRK1 links upstream defense and growth signals to downstream factor in fungal resistance and growth homeostasis response regulators.


Subject(s)
Solanum lycopersicum , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Meristem/metabolism , Plant Diseases , Plant Immunity , Plant Proteins/genetics , Plant Proteins/metabolism
2.
J Fungi (Basel) ; 3(4)2017 Sep 27.
Article in English | MEDLINE | ID: mdl-29371568

ABSTRACT

Interleukin-17 (IL-17) is a proinflammatory cytokine produced by adaptive CD4+ T helper cells and innate lymphocytes, such as γδ-T cells and TCRß+ "natural" Th17 cells. IL-17 activates signaling through the IL-17 receptor, which induces other proinflammatory cytokines, antimicrobial peptides and neutrophil chemokines that are important for antifungal activity. The importance of IL-17 in protective antifungal immunity is evident in mice and humans, where various genetic defects related to the IL-17-signaling pathway render them highly susceptible to forms of candidiasis such oropharyngeal candidiasis (OPC) or more broadly chronic mucocutaneous candidiasis (CMC), both caused mainly by the opportunistic fungal pathogen Candida albicans. OPC is common in infants and the elderly, HIV/AIDS and patients receiving chemotherapy and/or radiotherapy for head and neck cancers. This review focuses on the role of IL-17 in protection against candidiasis, and includes a brief discussion of non-Candida albicans fungal infections, as well as how therapeutic interventions blocking IL-17-related components can affect antifungal immunity.

3.
Cell Host Microbe ; 20(5): 606-617, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27923704

ABSTRACT

Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17raΔK13). Following oral Candida infection, Il17raΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra-/- mice. Susceptibility in Il17raΔK13 mice correlated with expression of the antimicrobial peptide ß-defensin 3 (BD3, Defb3). Consistently, Defb3-/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression.


Subject(s)
Candida/immunology , Candidiasis, Oral/immunology , Epithelial Cells/immunology , Mouth Mucosa/immunology , Receptors, Interleukin-17/metabolism , Signal Transduction , beta-Defensins/metabolism , Animals , Cell Line , Humans , Mice , Mice, Knockout , Receptors, Interleukin-17/deficiency
4.
BMC Genomics ; 15: 334, 2014 May 03.
Article in English | MEDLINE | ID: mdl-24885798

ABSTRACT

BACKGROUND: Tomato (Solanum lycopersicum), one of the world's most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea. RESULTS: Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites. CONCLUSIONS: In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.


Subject(s)
Botrytis/pathogenicity , Drug Resistance, Fungal/genetics , Solanum/microbiology , Transcription, Genetic , Gene Expression Regulation, Plant , RNA, Plant/genetics , Solanum/genetics , Solanum/metabolism
5.
Mol Plant ; 4(2): 331-45, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21300756

ABSTRACT

Genetic manipulation of cellulose biosynthesis in trees may provide novel insights into the growth and development of trees. To explore this possibility, the overexpression of an aspen secondary wall-associated cellulose synthase (PtdCesA8) gene was attempted in transgenic aspen (Populus tremuloides L.) and unexpectedly resulted in silencing of the transgene as well as its endogenous counterparts. The main axis of the transgenic aspen plants quickly stopped growing, and weak branches adopted a weeping growth habit. Furthermore, transgenic plants initially developed smaller leaves and a less extensive root system. Secondary xylem (wood) of transgenic aspen plants contained as little as 10% cellulose normalized to dry weight compared to 41% cellulose typically found in normal aspen wood. This massive reduction in cellulose was accompanied by proportional increases in lignin (35%) and non-cellulosic polysaccharides (55%) compared to the 22% lignin and 36% non-cellulosic polysaccharides in control plants. The transgenic stems produced typical collapsed or 'irregular' xylem vessels that had altered secondary wall morphology and contained greatly reduced amounts of crystalline cellulose. These results demonstrate the fundamental role of secondary wall cellulose within the secondary xylem in maintaining the strength and structural integrity required to establish the vertical growth habit in trees.


Subject(s)
Cellulose/metabolism , Populus/growth & development , Populus/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Lignin/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Populus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...