Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(45): 100450-100465, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37632611

ABSTRACT

The removal of organic dyes has attracted attention by adsorption-photocatalytic synergetic process in water treatment technology. Three novel ZnCo-LDHs/g-C3N4 were successfully prepared for the first time by layered construction technique through the hydrolysis of triethanolamine in this paper. They exhibited high specific surface area which facilitates the adsorption of sunset yellow (SY) from solution to catalyst surface. All the target pollutant dyes are very effectively removed by the three ZnCo-LDHs/g-C3N4 composites through synergetic effect of adsorption and photocatalysis process under UV irradiation (λ = 365 nm). The order of synergistic degradation effect for SY is as follows: ZnCo-LDHs/g-C3N4-3 (99.6%) > ZnCo-LDHs/g-C3N4-2 (99.5%) > ZnCo-LDHs/g-C3N4-1 (99.3%) > pure g-C3N4 (77.4%) > pure ZnCo-LDHs (44.2.6%) at the initial concentration of 75 mg L-1. ZnCo-LDHs/g-C3N4-3 has the largest k value (0.0284 min-1) in SY degradation, which is 2.8 times that of g-C3N4. ZnCo-LDHs/g-C3N4-3 is a very promising adsorption-photocatalyst for the removal of SY from wastewater. The electron spin resonance experiments demonstrate that OH·, 1O2, and O2- are the dominant active species and oxides SY together. This result demonstrates that the three ZnCo-LDHs/g-C3N4 have practical applications as efficient adsorption-photocatalytic materials and also provides a synergetic strategy for the removal of SY wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...