Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21295, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37920500

ABSTRACT

This study aims to prepare the energy sector for uncertainty using a foresight tool known as weak signals. Weak signals (subtle signs of emerging issues with significant impact potential) are often overlooked during strategic planning due to their inherent predictive uncertainty. However, the value does not lie in precise forecasting but in broadening the consideration of future possibilities. By proactively monitoring and addressing these otherwise neglected developments, stakeholders can gain early awareness of threats and opportunities and enhance their resilience, adaptability, and innovation. A panel of technology experts identified eight weak signals in this study: 1) growing mistrust and local grid security measures, 2) consumer reactions to overly prescriptive policies, 3) long-term forecasting errors for thin-margin projects, 4) emergence of variable power industries, and 5) establishment of intercontinental transmission precedence; including three potential 'wild cards' requiring proactive mitigation: 6) escalating electrical generation dependence on continued imports, 7) a new threat surpassing climate change, and 8) mass deployment of low-emissions technology triggering a runaway loss of social license. Political factors were the predominant source of uncertainty, as decisions can suddenly transform the energy landscape. Economic, technological, and social factors followed closely behind, generally through the emergence of new industries and behavioural responses. While environmental and legal factors were less frequent, stakeholders should still adopt a holistic approach, as the signals were found to be highly interconnected. Organisations should also assess their local context when applying these findings and continuously update and respond to their own list of weak signals.

2.
Molecules ; 24(21)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661797

ABSTRACT

Redox flow batteries (RFBs), provide a safe and cost-effective means of storing energy at grid-scale, and will play an important role in the decarbonization of global electricity networks. Several approaches have been explored to improve their efficiency and power density, and recently, cell geometry modification has shown promise in efforts to address mass transport limitations which affect electrochemical and overall system performance. Flow-by electrode configurations have demonstrated significant power density improvements in laboratory testing, however, flow-through designs with conductive felt remain the standard at commercial scale. Concentration gradients exist within these cells, limiting their performance. A new concept of redistributing reactants within the flow frame is introduced in this paper. This research shows a 60% improvement in minimum V3+ concentration within simulated vanadium redox flow battery (VRB/VRFB) cells through the application of static mixers. The enhanced reactant distribution showed a cell voltage improvement by reducing concentration overpotential, suggesting a pathway forward to increase limiting current density and cycle efficiencies in RFBs.


Subject(s)
Electric Power Supplies , Electrochemistry , Vanadium/chemistry , Electric Conductivity , Electrodes , Humans
3.
J Therm Biol ; 76: 8-20, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30143301

ABSTRACT

This study presents a novel, thermoelectric cryotherapy cap that aims to provide effective and controlled scalp cooling to prevent hair loss for chemotherapy patients. The cap's design consists of multiple thermoelectric coolers (TECs) evenly spaced and bonded to a soft thermal interface material, tightly fitted to a patient's head. A numerical model is developed to assess the performance of alternative cap designs in relation to their ability to achieve hair follicle hypothermia. Under ideal conditions, 26.5 W of heat removal from the scalp is required to achieve the clinically-significant follicle temperature target of 22 °C. Temperature maps of the subcutaneous tissue are generated to visualise the development of hypothermic follicles, and thereby assess the effectiveness of the cap design. Transient studies show that cooling to the therapeutic temperature can be achieved within 40 min. To avoid the possibility of cold-induced tissue damage, individual thermoelectric cooling modules should not be operated at a cooling flux beyond approximately 3175 W/m2. This may be achieved with 38 modules evenly spaced in a checkerboard arrangement, each providing 0.7 W of cooling to the scalp.


Subject(s)
Alopecia/prevention & control , Antineoplastic Agents/adverse effects , Hypothermia, Induced/instrumentation , Hypothermia, Induced/methods , Models, Biological , Scalp/physiopathology , Thermography/methods , Alopecia/chemically induced , Body Temperature , Female , Hair Follicle/drug effects , Hair Follicle/physiopathology , Humans , Male , Scalp/drug effects , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...