Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 10(4): e0004671, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27128681

ABSTRACT

INTRODUCTION: Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. OBJECTIVE: Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. METHODS: Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. RESULTS: The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). CONCLUSION: Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.


Subject(s)
Autophagy , Buruli Ulcer/genetics , Buruli Ulcer/pathology , Genetic Predisposition to Disease , Host-Pathogen Interactions , Mycobacterium ulcerans/immunology , Polymorphism, Single Nucleotide , Adolescent , Adult , Autophagy-Related Proteins , Buruli Ulcer/epidemiology , Carrier Proteins/genetics , Child , Female , Genotyping Techniques , Humans , Male , Nod2 Signaling Adaptor Protein/genetics , Risk Assessment , Ubiquitin-Protein Ligases/genetics , Young Adult
2.
Biotechnol Biofuels ; 7(1): 46, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24690493

ABSTRACT

BACKGROUND: The production of bioethanol from lignocellulosic feedstocks will only become economically feasible when the majority of cellulosic and hemicellulosic biopolymers can be efficiently converted into bioethanol. The main component of cellulose is glucose, whereas hemicelluloses mainly consist of pentose sugars such as D-xylose and L-arabinose. The genomes of filamentous fungi such as A. nidulans encode a multiplicity of sugar transporters with broad affinities for hexose and pentose sugars. Saccharomyces cerevisiae, which has a long history of use in industrial fermentation processes, is not able to efficiently transport or metabolize pentose sugars (e.g. xylose). Subsequently, the aim of this study was to identify xylose-transporters from A. nidulans, as potential candidates for introduction into S. cerevisiae in order to improve xylose utilization. RESULTS: In this study, we identified the A. nidulans xtrD (xylose transporter) gene, which encodes a Major Facilitator Superfamily (MFS) transporter, and which was specifically induced at the transcriptional level by xylose in a XlnR-dependent manner, while being partially repressed by glucose in a CreA-dependent manner. We evaluated the ability of xtrD to functionally complement the S. cerevisiae EBY.VW4000 strain which is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae, XtrD was targeted to the plasma membrane and its expression was able to restore growth on xylose, glucose, galactose, and mannose as single carbon sources, indicating that this transporter accepts multiple sugars as a substrate. XtrD has a high affinity for xylose, and may be a high affinity xylose transporter. We were able to select a S. cerevisiae mutant strain that had increased xylose transport when expressing the xtrD gene. CONCLUSIONS: This study characterized the regulation and substrate specificity of an A. nidulans transporter that represents a good candidate for further directed mutagenesis. Investigation into the area of sugar transport in fungi presents a crucial step for improving the S. cerevisiae xylose metabolism. Moreover, we have demonstrated that the introduction of adaptive mutations beyond the introduced xylose utilization genes is able to improve S. cerevisiae xylose metabolism.

3.
PLoS One ; 8(11): e81412, 2013.
Article in English | MEDLINE | ID: mdl-24282591

ABSTRACT

To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and -E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.


Subject(s)
Aspergillus nidulans/metabolism , Monosaccharide Transport Proteins/metabolism , Carbon Radioisotopes/metabolism , Genes, Fungal , Monosaccharide Transport Proteins/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
4.
PLoS One ; 8(9): e74725, 2013.
Article in English | MEDLINE | ID: mdl-24066151

ABSTRACT

Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37 °C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.


Subject(s)
Paracoccidioides/metabolism , Paracoccidioides/pathogenicity , Sulfur/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Paracoccidioidomycosis/microbiology , Virulence
5.
PLoS Negl Trop Dis ; 7(7): e2317, 2013.
Article in English | MEDLINE | ID: mdl-23936560

ABSTRACT

BACKGROUND: Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it may reveal targets for disease control. The initiation of the immune response relies on the activation of pattern recognition receptors, among which are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and regulation of the immune response. However, the role of TLR9 during the infection by this fungus remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro and in vivo models of infection by P. brasiliensis, comparing wild type and TLR9 deficient ((-/-)) mice, to assess the contribution of TLR9 on cytokine induction, phagocytosis and outcome of infection. We show that TLR9 recognizes either the yeast form or DNA from P. brasiliensis by stimulating the expression/production of pro-inflammatory cytokines by bone marrow derived macrophages, also increasing their phagocytic ability. We further show that TLR9 plays a protective role early after intravenous infection with P. brasiliensis, as infected TLR9(-/-) mice died at higher rate during the first 48 hours post infection than wild type mice. Moreover, TLR9(-/-) mice presented tissue damage and increased expression of several cytokines, such as TNF-α and IL-6. The increased pattern of cytokine expression was also observed during intraperitoneal infection of TLR9(-/-) mice, with enhanced recruitment of neutrophils. The phenotype of TLR9(-/-) hosts observed during the early stages of P. brasiliensis infection was reverted upon a transient, 48 hours post-infection, neutrophil depletion. CONCLUSIONS/SIGNIFICANCE: Our results suggest that TLR9 activation plays an early protective role against P. brasiliensis, by avoiding a deregulated type of inflammatory response associated to neutrophils that may lead to tissue damage. Thus modulation of TLR9 may be of interest to potentiate the host response against this pathogen.


Subject(s)
Inflammation/pathology , Paracoccidioides/immunology , Paracoccidioidomycosis/immunology , Paracoccidioidomycosis/pathology , Toll-Like Receptor 9/immunology , Animals , Disease Models, Animal , Histocytochemistry , Liver/pathology , Macrophages/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...