Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(2): 834-42, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22136106

ABSTRACT

Unraveling the kinetics of calcium orthophosphate (Ca-P) precipitation and dissolution is important for our understanding of the transformation and mobility of dissolved phosphate species in soils. Here we use an in situ atomic force microscopy (AFM) coupled with a fluid reaction cell to study the interaction of phosphate-bearing solutions with calcite surfaces. We observe that the mineral surface-induced formation of Ca-P phases is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca-P phases on calcite, at various pH values and ionic strengths relevant to soil solution conditions. A significant decrease in the dissolved phosphate concentration occurs due to the promoted nucleation of Ca-P phases on calcite surfaces at elevated phosphate concentrations and more significantly at high salt concentrations. Also, kinetic data analyses show that low concentrations of citrate caused an increase in the nucleation rate of Ca-P phases. However, at higher concentrations of citrate, nucleation acceleration was reversed with much longer induction times to form Ca-P nuclei. These results demonstrate that the nucleation-modifying properties of small organic molecules may be scaled up to analyze Ca-P dissolution-precipitation processes that are mediated by a more complex soil environment. This in situ observation, albeit preliminary, may contribute to an improved understanding of the fate of dissolved phosphate species in diverse soil systems.


Subject(s)
Calcium Carbonate/chemistry , Calcium Phosphates/chemistry , Phosphates/chemistry , Soil/chemistry , Citrates , Environmental Monitoring , Hydrogen-Ion Concentration , Kinetics , Soil Pollutants/chemistry
2.
Nature ; 454(7200): 92-5, 2008 Jul 03.
Article in English | MEDLINE | ID: mdl-18596808

ABSTRACT

The recent discovery of diamond-graphite inclusions in the Earth's oldest zircon grains (formed up to 4,252 Myr ago) from the Jack Hills metasediments in Western Australia provides a unique opportunity to investigate Earth's earliest known carbon reservoir. Here we report ion microprobe analyses of the carbon isotope composition of these diamond-graphite inclusions. The observed delta(13)C(PDB) values (expressed using the PeeDee Belemnite standard) range between -5 per mil and -58 per mil with a median of -31 per mil. This extends beyond typical mantle values of around -6 per mil to values observed in metamorphic and some eclogitic diamonds that are interpreted to reflect deep subduction of low-delta(13)C(PDB) biogenic surface carbon. Low delta(13)C(PDB) values may also be produced by inorganic chemical reactions, and therefore are not unambiguous evidence for life on Earth as early as 4,250 Myr ago. Regardless, our results suggest that a low-delta(13)C(PDB) reservoir may have existed on the early Earth.

3.
Nature ; 448(7156): 917-20, 2007 Aug 23.
Article in English | MEDLINE | ID: mdl-17713532

ABSTRACT

Detrital zircons more than 4 billion years old from the Jack Hills metasedimentary belt, Yilgarn craton, Western Australia, are the oldest identified fragments of the Earth's crust and are unique in preserving information on the earliest evolution of the Earth. Inclusions of quartz, K-feldspar and monazite in the zircons, in combination with an enrichment of light rare-earth elements and an estimated low zircon crystallization temperature, have previously been used as evidence for early recycling of continental crust, leading to the production of granitic melts in the Hadean era. Here we present the discovery of microdiamond inclusions in Jack Hills zircons with an age range from 3,058 +/- 7 to 4,252 +/- 7 million years. These include the oldest known diamonds found in terrestrial rocks, and introduce a new dimension to the debate on the origin of these zircons and the evolution of the early Earth. The spread of ages indicates that either conditions required for diamond formation were repeated several times during early Earth history or that there was significant recycling of ancient diamond. Mineralogical features of the Jack Hills diamonds-such as their occurrence in zircon, their association with graphite and their Raman spectroscopic characteristics-resemble those of diamonds formed during ultrahigh-pressure metamorphism and, unless conditions on the early Earth were unique, imply a relatively thick continental lithosphere and crust-mantle interaction at least 4,250 million years ago.

SELECTION OF CITATIONS
SEARCH DETAIL
...