Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(12): e0243893, 2020.
Article in English | MEDLINE | ID: mdl-33370353

ABSTRACT

Psychosocial chronic stress is a critical risk factor for the development of mood disorders. However, little is known about the consequences of acute stress in the context of chronic stress, and about the related brain responses. In the present study we examined the physio-behavioural effects of a supplementation with a sensory functional food ingredient (FI) containing Citrus sinensis extract (D11399, Phodé, France) in a pig psychosocial chronic stress model. Female pigs underwent a 5- to 6-week stress protocol while receiving daily the FI (FI, n = 10) or a placebo (Sham, n = 10). We performed pharmacological magnetic resonance imaging (phMRI) to study the brain responses to an acute stress (injection of Synacthen®, a synthetic ACTH-related agonist) and to the FI odour with or without previous chronic supplementation. The olfactory stimulation with the ingredient elicited higher brain responses in FI animals, demonstrating memory retrieval and habituation to the odour. Pharmacological stress with Synacthen injection resulted in an increased activity in several brain regions associated with arousal, associative learning (hippocampus) and cognition (cingulate cortex) in chronically stressed animals. This highlighted the specific impact of acute stress on the brain. These responses were alleviated in animals previously supplemented by the FI during the entire chronic stress exposure. As chronic stress establishes upon the accumulation of acute stress events, any attenuation of the brain responses to acute stress can be interpreted as a beneficial effect, suggesting that FI could be a viable treatment to help individuals coping with repeated stressful events and eventually to reduce chronic stress. This study provides additional evidence on the potential benefits of this FI, of which the long-term consequences in terms of behaviour and physiology need to be further investigated.


Subject(s)
Brain/physiology , Citrus/chemistry , Smell/physiology , Stress, Psychological , Animals , Brain/diagnostic imaging , Brain/drug effects , Female , Food Ingredients/analysis , France , Functional Food/analysis , Humans , Magnetic Resonance Imaging , Male , Smell/drug effects , Swine
2.
J Food Sci ; 84(9): 2666-2673, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31441517

ABSTRACT

Natural plant extracts are increasingly used as functional feed ingredients in animal husbandry and food ingredients in human alternative medicine to improve welfare and health. We investigated in 20 growing pigs via functional magnetic resonance imaging (fMRI) the brain blood oxygen level-dependent (BOLD) responses to olfactory stimulation with two sensory functional feed ingredients, A and B, at two different concentrations. Functional ingredient A contained extracts from Citrus sinensis (60% to 80%), and ingredient B contained a mixture of extracts Oreganum vulgarae (40% to 55%) and Cymbopogon flexuosus (20% to 25%). Increased concentration of ingredients induced a higher activation in reward and cognitive areas compared to lower concentrations. Moreover, considering both ingredients at the highest concentration, the ingredient A elicited higher brain responses in brain areas involved in hedonism/pleasantness compared to ingredient B, and more specifically in the caudate nucleus and orbitofrontal cortex. Our findings shed new light in the scope of emotion regulation through olfactory modulation via sensory functional ingredients, which opens the way to further preclinical studies in animal models and translational research in the context of nutrition, welfare, and health. PRACTICAL APPLICATION: Functional food/feed ingredients are gaining interest for improving health and welfare in humans and animals. Besides representing an alternative to antibiotics for example, food ingredients and their sensory characteristics might have a positive impact on emotions and consequently on well-being. Functional brain imaging in large animals such as in the pig model is a promising approach to investigate the central and behavioural effects of food ingredients, and determine the most effective blends and concentrations to modulate internal and emotional states.


Subject(s)
Appetite Stimulants/pharmacology , Brain , Magnetic Resonance Imaging , Smell , Animals , Brain/diagnostic imaging , Brain/physiology , Emotions/drug effects , Emotions/physiology , Food Ingredients , Functional Food , Plant Extracts , Smell/drug effects , Smell/physiology , Swine
3.
Front Behav Neurosci ; 13: 161, 2019.
Article in English | MEDLINE | ID: mdl-31379533

ABSTRACT

Psychological chronic stress is an important risk factor for major depressive disorder, of which consequences have been widely studied in rodent models. This work aimed at describing a pig model of chronic stress based on social isolation, environmental impoverishment and unpredictability. Three groups of animals of both sexes were constituted. Two were exposed to the psychosocial stressors while receiving (SF, n = 12) or not (SC, n = 22) the antidepressant fluoxetine, and a third group (NSC, n = 22) remained unstressed. Animals were observed in home pens and during dedicated tests to assess resignation and anxiety-like behaviors. Brain structure and function were evaluated via proton MRS and fMRI. Hippocampal molecular biology and immunodetection of cellular proliferation (Ki67+) and neuron maturation (DCX+) in the dentate gyrus were also performed. Salivary cortisol, fecal short-chain fatty acids (SCFAs), and various plasmatic and intestinal biomarkers were analyzed. Compared to NSC, SC animals showed more resignation (p = 0.019) and had a higher level of salivary cortisol (p = 0.020). SC brain responses to stimulation by a novel odor were lower, similarly to their hippocampal neuronal density (p = 0.015), cellular proliferation (p = 0.030), and hippocampal levels of BDNF and 5-HT1AR (p = 0.056 and p = 0.007, respectively). However, the number of DCX+ cells was higher in the ventral dentate gyrus in this group (p = 0.025). In addition, HOMA-IR was also higher (p < 0.001) and microbiota fermentation activity was lower (SCFAs, SC/NSC: p < 0.01) in SC animals. Fluoxetine partially or totally reversed several of these effects. Exposure to psychosocial stressors in the pig model induced effects consistent with the human and rodent literature, including resignation behavior and alterations of the HPA axis and hippocampus. This model opens the way to innovative translational research exploring the mechanisms of chronic stress and testing intervention strategies with good face validity related to human.

4.
Sci Rep ; 8(1): 12116, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108266

ABSTRACT

Cerebral lateralization, i.e. hemispheric asymmetries in structure and function, relates in many species to a preference to attack from their left. Lateralization increases cognitive capacity, enabling the simultaneous processing of multiple sources of information. Therefore, lateralization may constitute a component of fighting ability (Resource Holding Potential), and/or influence the efficiency of information-gathering during a contest. We hypothesized that lateralization will affect contest outcome and duration, with an advantage for more strongly lateralized individuals. In 52 dyadic contests between weight-matched pigs (Sus scrofa; n = 104; 10 wk age), the direction of orientation towards the opponent was scan sampled every 10 s. Laterality indexes (LI) were calculated for the direction and strength of lateralization. Up to 12.5% of the individuals showed significant lateralization towards either the right or left but lateralization was absent at the population level. In line with our hypothesis, animals showing strong lateralization (irrespective of direction) had a shorter contest duration than animals showing weak lateralization. Winners did not differ from losers in their strength or direction of lateralization. Overall the results suggest that cerebral lateralization may aid in conflict resolution, but does not directly contribute to fighting ability, and will be of value in the study of animal contests.


Subject(s)
Behavior, Animal/physiology , Competitive Behavior/physiology , Functional Laterality/physiology , Sus scrofa/physiology , Animals , Behavior Observation Techniques/methods , Female , Male , Sex Factors , Time Factors , Video Recording/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...