Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22270494

ABSTRACT

BackgroundDuring the first two years of the COVID-19 pandemic, the circulation of seasonal influenza viruses was unprecedentedly low. This led to concerns that the lack of immune stimulation to influenza viruses combined with waning antibody titres could lead to increased susceptibility to influenza in subsequent seasons, resulting in larger and more severe epidemics. MethodsWe analyzed historical influenza virus epidemiological data from 2003-2019 to assess the historical frequency of near-absence of seasonal influenza virus circulation and its impact on the size and severity of subsequent epidemics. Additionally, we measured haemagglutination inhibition-based antibody titres against seasonal influenza viruses using longitudinal serum samples from 165 healthy adults, collected before and during the COVID-19 pandemic, and estimated how antibody titres against seasonal influenza waned during the first two years of the pandemic. FindingsLow country-level prevalence of influenza virus (sub)types over one or more years occurred frequently before the COVID-19 pandemic and had relatively small impacts on subsequent epidemic size and severity. Additionally, antibody titres against seasonal influenza viruses waned negligibly during the first two years of the pandemic. InterpretationThe commonly held notion that lulls in influenza virus circulation, as observed during the COVID-19 pandemic, will lead to larger and/or more severe subsequent epidemics might not be fully warranted, and it is likely that post-lull seasons will be similar in size and severity to pre-lull seasons. FundingEuropean Research Council, Netherlands Organization for Scientific Research, Royal Dutch Academy of Sciences, Public Health Service of Amsterdam. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSDuring the first years of the COVID-19 pandemic, the incidence of seasonal influenza was unusually low, leading to widespread concerns of exceptionally large and/or severe influenza epidemics in the coming years. We searched PubMed and Google Scholar using a combination of search terms (i.e., "seasonal influenza", "SARS-CoV-2", "COVID-19", "low incidence", "waning rates", "immune protection") and critically considered published articles and preprints that studied or reviewed the low incidence of seasonal influenza viruses since the start of the COVID-19 pandemic and its potential impact on future seasonal influenza epidemics. We found a substantial body of work describing how influenza virus circulation was reduced during the COVID-19 pandemic, and a number of studies projecting the size of future epidemics, each positing that post-pandemic epidemics are likely to be larger than those observed pre-pandemic. However, it remains unclear to what extent the assumed relationship between accumulated susceptibility and subsequent epidemic size holds, and it remains unknown to what extent antibody levels have waned during the COVID-19 pandemic. Both are potentially crucial for accurate prediction of post-pandemic epidemic sizes. Added value of this studyWe find that the relationship between epidemic size and severity and the magnitude of circulation in the preceding season(s) is decidedly more complex than assumed, with the magnitude of influenza circulation in preceding seasons having only limited effects on subsequent epidemic size and severity. Rather, epidemic size and severity are dominated by season-specific effects unrelated to the magnitude of circulation in the preceding season(s). Similarly, we find that antibody levels waned only modestly during the COVID-19 pandemic. Implications of all the available evidenceThe lack of changes observed in the patterns of measured antibody titres against seasonal influenza viruses in adults and nearly two decades of epidemiological data suggest that post-pandemic epidemic sizes will likely be similar to those observed pre-pandemic, and challenge the commonly held notion that the widespread concern that the near-absence of seasonal influenza virus circulation during the COVID-19 pandemic, or potential future lulls, are likely to result in larger influenza epidemics in subsequent years.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21264163

ABSTRACT

BackgroundEmerging and future SARS-CoV-2 variants may jeopardize the effectiveness of vaccination campaigns. Therefore, it is important to know how the different vaccines perform against diverse SARS-CoV-2 variants. MethodsIn a prospective cohort of 165 SARS-CoV-2 naive health care workers, vaccinated with either one of four vaccines (BNT162b2, mRNA-1273, AZD1222 or Ad26.COV2.S), we performed a head-to-head comparison of the ability of sera to recognize and neutralize SARS-CoV-2 variants of concern (VOCs; Alpha, Beta, Gamma, Delta and Omicron). Repeated serum sampling was performed 5 times during a year (from January 2021 till January 2022), including before and after booster vaccination with BNT162b2. FindingsFour weeks after completing the initial vaccination series, SARS-CoV-2 wild-type neutralizing antibody titers were highest in recipients of BNT162b2 and mRNA-1273 (geometric mean titers (GMT) of 197 [95% CI 149-260] and 313 [95% CI 218-448], respectively), and substantially lower in those vaccinated with the adenovirus vector-based vaccines AZD1222 and Ad26.COV2.S (GMT of 26 [95% CI 18-37] and 14 [95% CI 8-25] IU/ml, respectively). These findings were robust for adjustment to age and sex. VOCs neutralization was reduced in all vaccine groups, with the largest (9- to 80-fold) reduction in neutralization observed against the Omicron variant. The booster BNT162b2 vaccination increased neutralizing antibody titers for all groups with substantial improvement against the VOCs including the Omicron variant. Study limitations include the lack of cellular immunity data. ConclusionsOverall, this study shows that the mRNA vaccines appear superior to adenovirus vector-based vaccines in inducing neutralizing antibodies against VOCs four weeks after initial vaccination and after booster vaccination.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21256092

ABSTRACT

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11 to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2 to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 S protein immunization in macaques, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21257441

ABSTRACT

Emerging SARS-CoV-2 variants pose a threat to human immunity induced by natural infection and vaccination. We assessed the recognition of three variants of concern (B.1.1.7, B.1.351 and P.1) in cohorts of COVID-19 patients ranging in disease severity (n = 69) and recipients of the Pfizer/BioNTech vaccine (n = 50). Spike binding and neutralization against all three VOC was substantially reduced in the majority of samples, with the largest 4-7-fold reduction in neutralization being observed against B.1.351. While hospitalized COVID-19 patients and vaccinees maintained sufficient neutralizing titers against all three VOC, 39% of non-hospitalized patients did not neutralize B.1.351. Moreover, monoclonal neutralizing antibodies (NAbs) show sharp reductions in their binding kinetics and neutralizing potential to B.1.351 and P.1, but not to B.1.1.7. These data have implications for the degree to which pre-existing immunity can protect against subsequent infection with VOC and informs policy makers of susceptibility to globally circulating SARS-CoV-2 VOC.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-21256710

ABSTRACT

BackgroundFew longitudinal data on COVID-19 symptoms across the full spectrum of disease severity are available. We evaluated symptom onset, severity and recovery up to nine months after illness onset. MethodsThe RECoVERED Study is a prospective cohort study based in Amsterdam, the Netherlands. Participants aged>18 years were recruited following SARS-CoV-2 diagnosis via the local Public Health Service and from hospitals. Standardised symptom questionnaires were completed at recruitment, at one week and month after recruitment, and monthly thereafter. Clinical severity was defined according to WHO criteria. Kaplan-Meier methods were used to compare time from illness onset to symptom recovery, by clinical severity. We examined determinants of time to recovery using multivariable Cox proportional hazards models. ResultsBetween 11 May 2020 and 31 January 2021, 301 COVID-19 patients (167[55%] male) were recruited, of whom 99/301(32.9%) had mild, 140/301(46.5%) moderate, 30/301(10.0%) severe and 32/301(10.6%) critical disease. The proportion of symptomatic participants who reported at least one persistent symptom at 12 weeks after illness onset was greater in those with severe/critical disease (81.7%[95%CI=68.7-89.7%]) compared to those with mild or moderate disease (33.0%[95%CI=23.0-43.3%] and 63.8%[95%CI=54.8-71.5%]). Even at nine months after illness onset, almost half of all participants (42.1%[95%CI=35.6-48.5]) overall continued to report [≥]1 symptom. Recovery was slower in participants with BMI[≥]30kg/m2 (HR 0.51[95%CI=0.30-0.87]) compared to those with BMI<25kg/m2, after adjusting for age, sex and number of comorbidities. ConclusionsCOVID-19 symptoms persisted for nine months after illness onset, even in those with mild disease. Obesity was the most important determinant of speed of recovery from symptoms.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21257797

ABSTRACT

BackgroundThe urgent need for, but limited availability of, SARS-CoV-2 vaccines worldwide has led to widespread consideration of dose sparing strategies, particularly single vaccine dosing of individuals with prior SARS-CoV-2 infection. MethodsWe evaluated SARS-CoV-2 specific antibody responses following a single-dose of BNT162b2 (Pfizer-BioNTech) mRNA vaccine in 155 previously SARS-CoV-2-infected individuals participating in a population-based prospective cohort study of COVID-19 patients. Participants varied widely in age, comorbidities, COVID-19 severity and time since infection, ranging from 1 to 15 months. Serum antibody titers were determined at time of vaccination and one week after vaccination. Responses were compared to those in SARS-CoV-2-naive health care workers after two BNT162b2 mRNA vaccine doses. ResultsWithin one week of vaccination, IgG antibody levels to virus spike and RBD proteins increased 27 to 29-fold and neutralizing antibody titers increased 12-fold, exceeding titers of fully vaccinated SARS-CoV-2-naive controls (95% credible interval (CrI): 0.56 to 0.67 v. control 95% CrI: -0.16 to -0.02). Pre-vaccination neutralizing antibody titers had the largest positive mean effect size on titers following vaccination (95% CrI (0.16 to 0.45)). COVID-19 severity, the presence of comorbidities and the time interval between infection and vaccination had no discernible impact on vaccine response. ConclusionA single dose of BNT162b2 mRNA vaccine up to 15 months after SARS-CoV-2 infection provides neutralizing titers exceeding two vaccine doses in previously uninfected individuals. These findings support wide implementation of a single-dose mRNA vaccine strategy after prior SARS-CoV-2 infection.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-21249440

ABSTRACT

BACKGROUNDIt is unclear how, when and where health care workers (HCW) working in hospitals are infected with SARS-CoV-2. METHODSProspective cohort study comprising 4-weekly measurement of SARS-CoV-2 specific antibodies and questionnaires from March to June 2020. We compared SARS-CoV-2 incidence between HCW working in Covid-19 patient care, HCW working in non-Covid-19 patient care and HCW not in patient care. Phylogenetic analyses of SARS-CoV-2 samples from patients and HCW were performed to identify potential transmission clusters. RESULTSWe included 801 HCW: 439 in the Covid-19 patient care group, 164 in the non-Covid-19 patient care group and 198 in the no patient care group. SARS-CoV-2 incidence was highest in HCW working in Covid-19 patient care (13.2%), as compared with HCW in non-Covid-19 patient care (6.7%, hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.2 to 4.3) and in HCW not working in patient care (3.6%, HR 3.9, 95% CI 1.8 to 8.6). Within the group of HCW caring for Covid-19 patients, SARS-CoV-2 cumulative incidence was highest in HCW working on Covid-19 wards (25.7%), as compared with HCW working on intensive care units (7.1%, HR 3.6, 95% CI 1.9 to 6.9), and HCW working in the emergency room (8.0%, HR 3.3, 95% CI 1.5 to 7.1). Phylogenetic analyses on Covid-19 wards identified multiple potential HCW-to-HCW transmission clusters while no patient-to-HCW transmission clusters were identified. CONCLUSIONSHCW working on Covid-19 wards are at increased risk for nosocomial SARS-CoV-2 infection, with an important role for HCW-to-HCW transmission. (Funded by the Netherlands Organization for Health Research and Development ZonMw & the Corona Research Fund Amsterdam UMC; Netherlands Trial Register number NL8645)

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20177857

ABSTRACT

Understanding the coronavirus (CoV) antibody landscape in relation to disease and susceptibility is critical for modelling of steps in the next phase during the current covid-19 pandemic. In March 2020, during the first month of the epidemic in The Netherlands, we performed cross sectional studies at two time points amongst patients of the Erasmus Medical Centre in Rotterdam, to assess the presence of antibodies against seasonal human coronaviruses (OC43, 229E, NL63, HKU1), emerging zoonotic coronaviruses (SARS, MERS) and SARS-CoV-2 in nine different age groups. We observed minimal SARS-CoV-2 reactivity early March (0.7% of sera), increasing to 3.0%, four weeks later, suggesting probably undetected cases during this early phase of the epidemic. Antibody responses were mostly coronavirus species specific at young age, but possible cross-reactivity between human seasonal CoVs was observed with increasing age.

9.
Article in English | WPRIM (Western Pacific) | ID: wpr-110414

ABSTRACT

BACKGROUND: Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This fully automated sample processing system, equipped with digital imaging technology, allows superior detection of microbial growth. Combining this approach with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) (Bruker Daltonik, Germany) is expected to enable more rapid identification of pathogens. METHODS: Early growth detection by digital imaging using Kiestra TLA combined with MS was compared to conventional methods (CM) of detection. Accuracy and time taken for microbial identification were evaluated for the two methods in 219 clinical blood culture isolates. The possible clinical impact of earlier microbial identification was assessed according to antibiotic treatment prescription. RESULTS: Pathogen identification using Kiestra TLA combined with MS resulted in a 30.6 hr time gain per isolate compared to CM. Pathogens were successfully identified in 98.4% (249/253) of all tested isolates. Early microbial identification without susceptibility testing led to an adjustment of antibiotic regimen in 12% (24/200) of patients. CONCLUSIONS: The requisite 24 hr incubation time for microbial pathogens to reach sufficient growth for susceptibility testing and identification would be shortened by the implementation of Kiestra TLA in combination with MS, compared to the use of CM. Not only can this method optimize workflow and reduce costs, but it can allow potentially life-saving switches in antibiotic regimen to be initiated sooner.


Subject(s)
Humans , Automation, Laboratory , Candida albicans/genetics , Disk Diffusion Antimicrobial Tests , Gram-Negative Bacteria/genetics , Gram-Positive Bacteria/genetics , RNA, Ribosomal, 16S/chemistry , Retrospective Studies , Sequence Analysis, RNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL