Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Circ Arrhythm Electrophysiol ; 13(8): e008296, 2020 08.
Article in English | MEDLINE | ID: mdl-32654503

ABSTRACT

BACKGROUND: Epidemiological studies have established obesity as an independent risk factor for atrial fibrillation (AF), but the underlying pathophysiological mechanisms remain unclear. Reduced cardiac sodium channel expression is a known causal mechanism in AF. We hypothesized that obesity decreases Nav1.5 expression via enhanced oxidative stress, thus reducing INa, and enhancing susceptibility to AF. METHODS: To elucidate the underlying electrophysiological mechanisms a diet-induced obese mouse model was used. Weight, blood pressure, glucose, F2-isoprostanes, NOX2 (NADPH oxidase 2), and PKC (protein kinase C) were measured in obese mice and compared with lean controls. Invasive electrophysiological, immunohistochemistry, Western blotting, and patch clamping of membrane potentials was performed to evaluate the molecular and electrophysiological phenotype of atrial myocytes. RESULTS: Pacing-induced AF in 100% of diet-induced obese mice versus 25% in controls (P<0.01) with increased AF burden. Cardiac sodium channel expression, INa and atrial action potential duration were reduced and potassium channel expression (Kv1.5) and current (IKur) and F2-isoprostanes, NOX2, and PKC-α/δ expression and atrial fibrosis were significantly increased in diet-induced obese mice as compared with controls. A mitochondrial antioxidant reduced AF burden, restored INa, ICa,L, IKur, action potential duration, and reversed atrial fibrosis in diet-induced obese mice as compared with controls. CONCLUSIONS: Inducible AF in obese mice is mediated, in part, by a combined effect of sodium, potassium, and calcium channel remodeling and atrial fibrosis. Mitochondrial antioxidant therapy abrogated the ion channel and structural remodeling and reversed the obesity-induced AF burden. Our findings have important implications for the management of obesity-mediated AF in patients. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atrial Fibrillation/etiology , Atrial Remodeling , Heart Rate , Myocytes, Cardiac/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Obesity/complications , Oxidative Stress , Action Potentials , Animals , Antioxidants/pharmacology , Atrial Fibrillation/drug therapy , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Remodeling/drug effects , Calcium Channels, L-Type/metabolism , Diet, High-Fat , Disease Models, Animal , Fibrosis , Heart Rate/drug effects , Kv1.5 Potassium Channel/metabolism , Male , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/drug effects , Obesity/metabolism , Obesity/physiopathology , Oxidative Stress/drug effects , Signal Transduction
2.
JAMA Cardiol ; 5(1): 57-64, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31774463

ABSTRACT

Importance: The association between obesity, an established risk factor for atrial fibrillation (AF), and response to antiarrhythmic drugs (AADs) remains unclear. Objective: To test the hypothesis that obesity differentially mediates response to AADs in patients with symptomatic AF and in mice with diet-induced obesity (DIO) and pacing induced AF. Design, Setting, and Participants: An observational cohort study was conducted including 311 patients enrolled in a clinical-genetic registry. Mice fed a high-fat diet for 10 weeks were also evaluated. The study was conducted from January 1, 2018, to June 2, 2019. Main Outcomes and Measures: Symptomatic response was defined as continuation of the same AAD for at least 3 months. Nonresponse was defined as discontinuation of the AAD within 3 months of initiation because of poor symptomatic control of AF necessitating alternative rhythm control therapy. Outcome measures in DIO mice were pacing-induced AF and suppression of AF after 2 weeks of treatment with flecainide acetate or sotalol hydrochloride. Results: A total of 311 patients (mean [SD] age, 65 [12] years; 120 women [38.6%]) met the entry criteria and were treated with a class I or III AAD for symptomatic AF. Nonresponse to class I AADs in patients with obesity was less than in those without obesity (30% [obese] vs 6% [nonobese]; difference, 0.24; 95% CI, 0.11-0.37; P = .001). Both groups had similar symptomatic response to a potassium channel blocker AAD. On multivariate analysis, obesity, AAD class (class I vs III AAD [obese] odds ratio [OR], 4.54; 95% Wald CI, 1.84-11.20; P = .001), female vs male sex (OR, 2.31; 95% Wald CI, 1.07-4.99; P = .03), and hyperthyroidism (OR, 4.95; 95% Wald CI, 1.23-20.00; P = .02) were significant indicators of the probability of failure to respond to AADs. Pacing induced AF in 100% of DIO mice vs 30% (P < .001) in controls. Furthermore, DIO mice showed a greater reduction in AF burden when treated with sotalol compared with flecainide (85% vs 25%; P < .01). Conclusions and Relevance: Results suggest that obesity differentially mediates response to AADs in patients and in mice with AF, possibly reducing the therapeutic effectiveness of sodium channel blockers. These findings may have implications for the management of AF in patients with obesity.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Obesity/complications , Voltage-Gated Sodium Channel Blockers/therapeutic use , Aged , Animals , Anti-Arrhythmia Agents/pharmacology , Atrial Fibrillation/complications , Diet, High-Fat , Disease Models, Animal , Female , Flecainide/pharmacology , Heart/drug effects , Humans , Logistic Models , Male , Mice , Middle Aged , Multivariate Analysis , NAV1.5 Voltage-Gated Sodium Channel , Sex Factors , Sotalol/pharmacology , Treatment Failure , Treatment Outcome , Voltage-Gated Sodium Channel Blockers/pharmacology
3.
J Mol Cell Cardiol ; 132: 24-35, 2019 07.
Article in English | MEDLINE | ID: mdl-31077706

ABSTRACT

A frameshift (fs) mutation in the natriuretic peptide precursor A (NPPA) gene, encoding a mutant atrial natriuretic peptide (Mut-ANP), has been linked with familial atrial fibrillation (AF) but the underlying mechanisms by which the mutation causes AF remain unclear. We engineered 2 transgenic (TG) mouse lines expressing the wild-type (WT)-NPPA gene (H-WT-NPPA) and the human fs-Mut-NPPA gene (H-fsMut-NPPA) to test the hypothesis that mice overexpressing the human NPPA mutation are more susceptible to AF and elucidate the underlying electrophysiologic and molecular mechanisms. Transthoracic echocardiography and surface electrocardiography (ECG) were performed in H-fsMut-NPPA, H-WT-NPPA, and Non-TG mice. Invasive electrophysiology, immunohistochemistry, Western blotting and patch clamping of membrane potentials were performed. To examine the role of the Mut-ANP in ion channel remodeling, we measured plasma cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in the 3 groups of mice. In H-fsMut-NPPA mice mean arterial pressure (MAP) was reduced when compared to H-WT-NPPA and Non-TG mice. Furthermore, injection of synthetic fs-Mut-ANP lowered the MAP in H-WT-NPPA and Non-TG mice while synthetic WT-ANP had no effect on MAP in the 3 groups of mice. ECG characterization revealed significantly prolonged QRS duration in H-fsMut-NPPA mice when compared to the other two groups. Trans-Esophageal (TE) atrial pacing of H-fsMut-NPPA mice showed increased AF burden and AF episodes when compared with H-WT-NPPA or Non-TG mice. The cardiac Na+ (NaV1.5) and Ca2+ (CaV1.2/CaV1.3) channel expression and currents (INa, ICaL) and action potential durations (APD90/APD50/APD20) were significantly reduced in H-fsMut-NPPA mice while the rectifier K+ channel current (IKs) was markedly increased when compared to the other 2 groups of mice. In addition, plasma cGMP levels were only increased in H-fsMut-NPPA mice with a corresponding reduction in plasma cAMP levels and PKA activity. In summary, we showed that mice overexpressing an AF-linked NPPA mutation are more prone to develop AF and this risk is mediated in part by remodeling of the cardiac Na+, Ca2+ and K+ channels creating an electrophysiologic substrate for reentrant AF.


Subject(s)
Action Potentials , Atrial Fibrillation/etiology , Atrial Natriuretic Factor/genetics , Frameshift Mutation , Heart Atria/physiopathology , Myocytes, Cardiac/pathology , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Animals , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Natriuretic Factor/metabolism , Electrophysiological Phenomena , Humans , Membrane Potentials , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism
4.
Stem Cell Reports ; 10(6): 1867-1878, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29731429

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived atrial cardiomyocytes (CMs) hold great promise for elucidating underlying cellular mechanisms that cause atrial fibrillation (AF). In order to use atrial-like hiPSC-CMs for arrhythmia modeling, it is essential to better understand the molecular and electrophysiological phenotype of these cells. We performed comprehensive molecular, transcriptomic, and electrophysiologic analyses of retinoic acid (RA)-guided hiPSC atrial-like CMs and demonstrate that RA results in differential expression of genes involved in calcium ion homeostasis that directly interact with an RA receptor, chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TFII). We report a mechanism by which RA generates an atrial-like electrophysiologic signature through the downstream regulation of calcium channel gene expression by COUP-TFII and modulation of calcium handling. Collectively, our results provide important insights into the underlying molecular mechanisms that regulate atrial-like hiPSC-CM electrophysiology and support the use of atrial-like CMs derived from hiPSCs to model AF.


Subject(s)
Calcium/metabolism , Electrophysiological Phenomena , Heart Atria/cytology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Action Potentials , Adenosine/metabolism , Adenosine/pharmacology , Biomarkers , Carbachol/pharmacology , Cell Differentiation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Transcriptome , Tretinoin/pharmacology
5.
J Med Chem ; 56(12): 4990-5008, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23713581

ABSTRACT

Lymphoid-specific tyrosine phosphatase (LYP), a member of the protein tyrosine phosphatase (PTP) family of signaling enzymes, is associated with a broad spectrum of autoimmune diseases. Herein we describe our structure-based lead optimization efforts within a 6-hydroxy-benzofuran-5-carboxylic acid series culminating in the identification of compound 8b, a potent and selective inhibitor of LYP with a K(i) value of 110 nM and more than 9-fold selectivity over a large panel of PTPs. The structure of LYP in complex with 8b was obtained by X-ray crystallography, providing detailed information about the molecular recognition of small-molecule ligands binding LYP. Importantly, compound 8b possesses highly efficacious cellular activity in both T- and mast cells and is capable of blocking anaphylaxis in mice. Discovery of 8b establishes a starting point for the development of clinically useful LYP inhibitors for treating a wide range of autoimmune disorders.


Subject(s)
Autoimmune Diseases/drug therapy , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Anaphylaxis/drug therapy , Animals , Carboxylic Acids/chemistry , Down-Regulation/drug effects , Female , Humans , Jurkat Cells , Lymphocyte Activation/drug effects , Mast Cells/drug effects , Mast Cells/immunology , Mice , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use
6.
J Phys Chem A ; 116(41): 10203-8, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23039815

ABSTRACT

High-level G3X(MP2)-RAD calculations have been carried out to examine the effect of interposing a "connector" group (W) on the interaction between a substituent (X) and the radical center in carbon-centered radicals ((•)CH(2)-W-X). The connector groups include -CH(2)-, -CH═CH-, -C≡C-, -p-C(6)H(4)-, -m-C(6)H(4)-, and -o-C(6)H(4)-, and the substituents include H, CF(3), CH(3), CH═O, NH(2), and CH═CH(2). Analysis of the results is facilitated by introducing two new quantities termed radical connector energies and molecule connector energies. We find that the -CH(2)- connector effectively turns off π-electron effects but allows the transmission of σ-electron effects, albeit at a reduced level. The effect of a substituent X attached to the -CH═CH- and -C≡C- connector groups is to represent a perturbation of the effect of the connector groups themselves (i.e., CH═CH(2) and C≡CH).


Subject(s)
Carbon/chemistry , Organic Chemicals/chemistry , Free Radicals/chemistry , Quantum Theory
7.
J Chem Phys ; 135(12): 124306, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21974521

ABSTRACT

The 1,4-pentadienyl (vinylallyl) radical has been observed for the first time by optical spectroscopy. An excitation spectrum is recorded on m/z 67 by resonant two-color two-photon ionization spectroscopy. Several bands are observed with the origin transition identified at 19 449 cm(-1). The spectrum is assigned by a comparison with ab initio frequencies calculated at the CASPT2/cc-pVTZ level of theory, with an accompanying Franck-Condon calculation of the excitation spectrum, including Dushinsky mixing. The b(1) and a(2) outer C-C bond torsional modes are calculated to halve in frequency upon electronic excitation, bringing about their appearance in the excitation spectrum. This can be readily understood by considering the torsional sensitivity of the frontier molecular orbital energies. High-level quantum chemical calculations of the radical stabilization energy, resulting in a value of nearly 120 kJ mol(-1), provide quantitative confirmation that this radical is highly stabilized.


Subject(s)
Alkadienes/chemistry , Thermodynamics , Free Radicals/chemistry , Quantum Theory , Spectrophotometry, Ultraviolet
8.
Org Biomol Chem ; 9(10): 3636-57, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21451861

ABSTRACT

The bond dissociation energies (BDEs) and radical stabilization energies (RSEs) which result from 166 reactions that lead to carbon-centered radicals of the type ˙CH(2)X, ˙CHXY and ˙CXYZ, where X, Y and Z are any of the fourteen substituents H, F, Cl, NH(2), OH, SH, CH[double bond, length as m-dash]CH(2), C[triple bond, length as m-dash]CH, BH(2), CHO, COOH, CN, CH(3), and CF(3), were calculated using spin-restricted and -unrestricted variants of the double-hybrid B2-PLYP method with the 6-311+G(3df,2p) basis set. The interactions of substituents X, Y, and Z in both the radicals (˙CXYZ) and in the precursor closed-shell molecules (CHXYZ), as well as the extent of additivity of such interactions, were investigated by calculating radical interaction energies (RIEs), molecule interaction energies (MIEs), and deviations from additivity of RSEs (DARSEs) for a set of 152 reactions that lead to di- (˙CHXY) and tri- (˙CXYZ) substituted carbon-centered radicals. The pairwise quantities describing the effects of pairs of substituents in trisubstituted systems, namely pairwise MIEs (PMIEs), pairwise RIEs (PRIEs) and deviations from pairwise additivity of RSEs (DPARSEs), were also calculated for the set of 61 reactions that lead to trisubstituted radicals (˙CXYZ). Both ROB2-PLYP and UB2-PLYP were found to perform quite well in predicting the quantities related to the stabilities of carbon-centered radicals when compared with available experimental data and with the results obtained from the high-level composite method G3X(MP2)-RAD. Particular selections of substituents or combinations of substituents from the current test set were found to lead to specially stable radicals, increasing the RSEs to a maximum of +68.2 kJ mol(-1) for monosubstituted radicals ˙CH(2)X (X = CH[double bond, length as m-dash]CH(2)), +131.7 kJ mol(-1) for disubstituted radicals ˙CHXY (X = NH(2), Y = CHO), and +177.1 kJ mol(-1) for trisubstituted radicals ˙CXYZ (X = NH2, Y = Z = CHO).

9.
J Phys Chem A ; 113(36): 9861-73, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19645437

ABSTRACT

The performance of the restricted-open-shell form of the double-hybrid density functional theory (DHDFT) B2-PLYP procedure has been compared with that of its unrestricted counterpart using the G3/05 test set. Additionally, the influence of basis set on the parametrization and performance of ROB2-PLYP, and the further improvement of ROB2-PLYP through augmentation with a long-range dispersion function, have been investigated. We find that, after optimization of the two empirical DHDFT parameters, the ROB2-PLYP method (HF exchange = 59% and MP2 correlation = 28%) performs slightly better than the corresponding UB2-PLYP method (HF exchange = 62% and MP2 correlation = 35%), with mean absolute deviations (MADs) from the experimental energies in the G3/05 test set of 9.1 and 9.9 kJ mol(-1), respectively, when the cc-pVQZ basis set is employed. Separate optimizations of the parameters for the RO and U procedures are crucial for a fair comparison. For example, for the G2/97 test set, ROB2-PLYP(53,27) and ROB2-PLYP(62,35) show MADs of 12.2 and 13.5 kJ mol(-1), respectively, compared with the 6.6 kJ mol(-1) for (the optimized) ROB2-PLYP(59,28). The performance of ROB2-PLYP deteriorates significantly as the basis-set size is decreased, reflecting the enhanced basis-set dependence of the MP2 contribution compared with standard DFT. We find that this deficiency can be partly overcome through reparametrization. However, when the basis set drops below triple-zeta, the improvements made on reoptimizing the ROB2-PLYP parameters are not sufficient to warrant their general use. We find that the dispersion- and BSSE-corrected ROB2-PLYP(59,28)-D HCP procedure performs significantly better than ROB2-PLYP(59,28) for the S22 test set of interaction energies in which dispersion interactions are particularly important, with the MAD falling from 6.1 to 1.6 kJ mol(-1). However, when the same D correction is applied to the G3/05 test set, the performance of ROB2-PLYP(59,28)-D deteriorates slightly compared with ROB2-PLYP(59,28), with the MAD increasing from 9.1 to 9.5 kJ mol(-1).

10.
J Phys Chem A ; 112(50): 13225-30, 2008 Dec 18.
Article in English | MEDLINE | ID: mdl-18759419

ABSTRACT

The extent of spin contamination in unrestricted versions of pure, hybrid and double-hybrid density functional theory (DFT) methods, and its consequences, as manifested in the difference between unrestricted and restricted energies (U - R), has been investigated for 22 homolytic bond dissociation reactions. In accordance with previous studies, increasing the amount of Hartree-Fock (HF) exchange in unrestricted hybrid DFT procedures leads to an increase in the extent of spin contamination. However, in unrestricted double-hybrid DFT procedures, which include both a proportion of HF exchange and a perturbative correlation contribution (MP2), the opposing behavior of UHF and UMP2 with respect to spin contamination leads to smaller differences between the energies predicted by unrestricted and restricted variants. For example, for the most spin-contaminated radicals, a 30-100 kJ mol(-1) |U - R| difference at the HF and MP2 levels is reduced to just 0-5 kJ mol(-1) with the double-hybrid functionals. The double-hybrid UDFT procedures can thus benefit from the inclusion of UHF and UMP2 contributions without incurring to the same extent the problems associated with spin contamination.

11.
J Phys Chem A ; 111(51): 13638-44, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18047305

ABSTRACT

Various contemporary theoretical procedures have been tested for their accuracy in predicting the bond dissociation energies (BDEs) and the radical stabilization energies (RSEs) for a test set of 22 monosubstituted methyl radicals. The procedures considered include the high-level W1, W1', CBS-QB3, ROCBS-QB3, G3(MP2)-RAD, and G3X(MP2)-RAD methods, unrestricted and restricted versions of the double-hybrid density functional theory (DFT) procedures B2-PLYP and MPW2-PLYP, and unrestricted and restricted versions of the hybrid DFT procedures BMK and MPWB1K, as well as the unrestricted DFT procedures UM05 and UM05-2X. The high-level composite procedures show very good agreement with experiment and are used to evaluate the performance of the comparatively less expensive DFT procedures. RMPWB1K and both RBMK and UBMK give very promising results for absolute BDEs, while additionally restricted and unrestricted X2-PLYP methods and UM05-2X give excellent RSE values. UM05, UB2-PLYP, UMPW2-PLYP, UM05-2X, and UMPWB1K are among the less well performing methods for BDEs, while UMPWB1K and UM05 perform less well for RSEs. The high-level theoretical results are used to recommend alternative experimental BDEs for propyne, acetaldehyde, and acetic acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...