Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Science ; 356(6338): 608-616, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28495746

ABSTRACT

Multiple human diseases ensue from a hereditary or acquired deficiency of iron-transporting protein function that diminishes transmembrane iron flux in distinct sites and directions. Because other iron-transport proteins remain active, labile iron gradients build up across the corresponding protein-deficient membranes. Here we report that a small-molecule natural product, hinokitiol, can harness such gradients to restore iron transport into, within, and/or out of cells. The same compound promotes gut iron absorption in DMT1-deficient rats and ferroportin-deficient mice, as well as hemoglobinization in DMT1- and mitoferrin-deficient zebrafish. These findings illuminate a general mechanistic framework for small molecule-mediated site- and direction-selective restoration of iron transport. They also suggest that small molecules that partially mimic the function of missing protein transporters of iron, and possibly other ions, may have potential in treating human diseases.


Subject(s)
Iron/metabolism , Animals , Caco-2 Cells , Gastrointestinal Absorption , Hemoglobins/metabolism , Humans , Iron-Binding Proteins/metabolism , Monoterpenes/metabolism , Rats , Saccharomyces cerevisiae/metabolism , Tropolone/analogs & derivatives , Tropolone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...