Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Science ; 374(6564): 225-227, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34618590

ABSTRACT

Topological photonics offers enhanced control over electromagnetic fields by providing a platform for robust trapping and guiding of topological states of light. By combining the strong coupling between topological photons with phonons in hexagonal boron nitride (hBN), we demonstrate a platform to control and guide hybrid states of light and lattice vibrations. The observed topological edge states of phonon-polaritons are found to carry nonzero angular momentum locked to their propagation direction, which enables their robust transport. Thus, these topological quasiparticles enable the funneling of infrared phonons mediated by helical infrared photons along arbitrary pathways and across sharp bends, thereby offering opportunities for applications ranging from Raman and vibrational spectroscopy with structured phonon-polaritons to directional heat dissipation.

2.
Phys Rev Appl ; 14(2)2020 Aug.
Article in English | MEDLINE | ID: mdl-34859117

ABSTRACT

Luminescence arising from ß -decay of radiotracers has garnered much interest recently as a viable in-vivo imaging technique. The emitted Cerenkov radiation can be directly detected by high sensitivity cameras or used to excite highly efficient fluorescent dyes. Here, we investigate the enhancement of visible and infrared emission driven by ß -decay of radioisotopes in the presence of a hyperbolic nanocavity. By means of a transfer matrix approach, we obtain quasi-analytic expressions for the fluorescence enhancement factor at the dielectric core of the metalodielectric cavity, reporting a hundred-fold amplification in periodic structures. A particle swarm optimization of the layered shell geometry reveals that up to a ten-thousand-fold enhancement is possible thanks to the hybridization and spectral overlapping of whispering-gallery and localized-plasmon modes. Our findings may find application in nuclear-optical medical imaging, as they provide a strategy for the exploitation of highly energetic gamma rays, Cerenkov luminescence, and visible and near-infrared fluorescence through the same nanotracer.

3.
Opt Express ; 17(8): 6636-42, 2009 Apr 13.
Article in English | MEDLINE | ID: mdl-19365490

ABSTRACT

An active one-dimensional Fibonacci photonic quasi-crystal is realized via spin coating. Luminescence properties of an organic dye embedded in the quasi-crystal are studied experimentally and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in good agreement with the theoretical calculations for steady-state luminescence spectra.


Subject(s)
Crystallization , Luminescent Measurements/methods , Manufactured Materials , Models, Theoretical , Optical Devices , Computer Simulation , Light , Scattering, Radiation
4.
Opt Express ; 16(24): 19535-40, 2008 Nov 24.
Article in English | MEDLINE | ID: mdl-19030039

ABSTRACT

We report the realization of a mechanically flexible microcavity laser emitting at 657 nm using spin coating. These optically pumped vertical cavity surface emitting lasers use InGaP colloidal quantum dots as the active medium and alternating polymer layers of different refractive indices as the Bragg mirrors. Results of photoluminescence measurements indicating enhancement in spontaneous emission are presented. We also demonstrate the possibility of peeling the device off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. This new class of hybrid lasers combines advantages of organic and inorganic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...