Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17557, 2024.
Article in English | MEDLINE | ID: mdl-38952993

ABSTRACT

Imagery has become one of the main data sources for investigating seascape spatial patterns. This is particularly true in deep-sea environments, which are only accessible with underwater vehicles. On the one hand, using collaborative web-based tools and machine learning algorithms, biological and geological features can now be massively annotated on 2D images with the support of experts. On the other hand, geomorphometrics such as slope or rugosity derived from 3D models built with structure from motion (sfm) methodology can then be used to answer spatial distribution questions. However, precise georeferencing of 2D annotations on 3D models has proven challenging for deep-sea images, due to a large mismatch between navigation obtained from underwater vehicles and the reprojected navigation computed in the process of building 3D models. In addition, although 3D models can be directly annotated, the process becomes challenging due to the low resolution of textures and the large size of the models. In this article, we propose a streamlined, open-access processing pipeline to reproject 2D image annotations onto 3D models using ray tracing. Using four underwater image datasets, we assessed the accuracy of annotation reprojection on 3D models and achieved successful georeferencing to centimetric accuracy. The combination of photogrammetric 3D models and accurate 2D annotations would allow the construction of a 3D representation of the landscape and could provide new insights into understanding species microdistribution and biotic interactions.


Subject(s)
Imaging, Three-Dimensional , Imaging, Three-Dimensional/methods , Algorithms , Machine Learning , Image Processing, Computer-Assisted/methods , Oceans and Seas
3.
Glob Chang Biol ; 26(4): 2181-2202, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32077217

ABSTRACT

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.

4.
PLoS One ; 14(12): e0218904, 2019.
Article in English | MEDLINE | ID: mdl-31891586

ABSTRACT

Video and image data are regularly used in the field of benthic ecology to document biodiversity. However, their use is subject to a number of challenges, principally the identification of taxa within the images without associated physical specimens. The challenge of applying traditional taxonomic keys to the identification of fauna from images has led to the development of personal, group, or institution level reference image catalogues of operational taxonomic units (OTUs) or morphospecies. Lack of standardisation among these reference catalogues has led to problems with observer bias and the inability to combine datasets across studies. In addition, lack of a common reference standard is stifling efforts in the application of artificial intelligence to taxon identification. Using the North Atlantic deep sea as a case study, we propose a database structure to facilitate standardisation of morphospecies image catalogues between research groups and support future use in multiple front-end applications. We also propose a framework for coordination of international efforts to develop reference guides for the identification of marine species from images. The proposed structure maps to the Darwin Core standard to allow integration with existing databases. We suggest a management framework where high-level taxonomic groups are curated by a regional team, consisting of both end users and taxonomic experts. We identify a mechanism by which overall quality of data within a common reference guide could be raised over the next decade. Finally, we discuss the role of a common reference standard in advancing marine ecology and supporting sustainable use of this ecosystem.


Subject(s)
Classification/methods , Image Processing, Computer-Assisted/standards , Marine Biology/standards , Animals , Artificial Intelligence , Biodiversity , Data Curation/methods , Data Curation/standards , Databases, Factual , Ecology , Ecosystem , Image Processing, Computer-Assisted/methods , Marine Biology/classification
5.
Mar Environ Res ; 129: 76-101, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28487161

ABSTRACT

With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.


Subject(s)
Adaptation, Physiological , Aquatic Organisms/physiology , Environmental Monitoring , Mining , Animals , Ecosystem , Hydrothermal Vents
6.
PLoS One ; 12(2): e0171750, 2017.
Article in English | MEDLINE | ID: mdl-28178346

ABSTRACT

Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.


Subject(s)
Ecosystem , Environment , Mining , Oceans and Seas , Algorithms , Models, Theoretical
7.
PLoS One ; 11(9): e0162263, 2016.
Article in English | MEDLINE | ID: mdl-27683216

ABSTRACT

In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.

8.
Zootaxa ; 4092(1): 1-32, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-27394364

ABSTRACT

The number of records of the genus Prionospio Malmgren, 1867, from the deep sea (>2000 m) are relatively few and do not reflect the actual occurrence of species nor their potential ecological importance. In this paper we describe five new species of this genus (Prionospio amarsupiata sp. nov., P. vallensis sp. nov., P. branchilucida sp. nov., P. hermesia sp. nov. and P. kaplani sp. nov.) all of which are abundant members of the deep-sea community. We also describe two new species of the genus Aurospio Maciolek, 1981 (Aurospio abranchiata sp. nov. and A. tribranchiata sp. nov.) again common elements of the abyssal fauna. Two of the new species have characters which question the generic distinctiveness of Prionospio and Aurospio. The problems in differentiating these two genera are discussed.


Subject(s)
Polychaeta/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Ecosystem , Oceans and Seas , Organ Size , Polychaeta/anatomy & histology , Polychaeta/growth & development
9.
Zootaxa ; 4098(2): 298-310, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27394587

ABSTRACT

Five species of caridean shrimp, including four Alvinocarididae Christoffersen, 1986 and one thorid species of the genus Lebbeus White, 1847, are reported from the recently discovered hydrothermal vent field off Futuna Island in the Southwest Pacific (depths 1418-1478 m): Alvinocaridinides semidentatus n. sp., Alvinocaris komaii Zelnio & Hourdez, 2009, Nautilocaris saintlaurentae Komai & Segonzac, 2004, Rimicaris variabilis (Komai & Tsuchida, 2015), and Lebbeus wera Ahyong, 2009. The new species, provisionally assigned to Alvinocaridinides Komai & Chan, 2010, is readily distinguished from the type species of the genus, A. formosa Komai & Chan, 2010, by the characteristic armature of the rostrum and of the propodi of the third and fourth pereopods and the possession of ischial spines on the third and fourth pereopods. Identification of R. variabilis has been confirmed by morphology and sequence comparison of mitochondrial COI gene. The geographical range of L. wera is extended to the north from the Brothers Caldera in the Kermadec Ridge.


Subject(s)
Decapoda/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Decapoda/anatomy & histology , Decapoda/growth & development , Female , Hydrothermal Vents , Islands , Male , Organ Size , Pacific Ocean
10.
Sci Rep ; 6: 26808, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27245847

ABSTRACT

Polymetallic nodule mining at abyssal depths in the Clarion Clipperton Fracture Zone (Eastern Central Pacific) will impact one of the most remote and least known environments on Earth. Since vast areas are being targeted by concession holders for future mining, large-scale effects of these activities are expected. Hence, insight into the fauna associated with nodules is crucial to support effective environmental management. In this study video surveys were used to compare the epifauna from sites with contrasting nodule coverage in four license areas. Results showed that epifaunal densities are more than two times higher at dense nodule coverage (>25 versus ≤10 individuals per 100 m(2)), and that taxa such as alcyonacean and antipatharian corals are virtually absent from nodule-free areas. Furthermore, surveys conducted along tracks from trawling or experimental mining simulations up to 37 years old, suggest that the removal of epifauna is almost complete and that its full recovery is slow. By highlighting the importance of nodules for the epifaunal biodiversity of this abyssal area, we urge for cautious consideration of the criteria for determining future preservation zones.


Subject(s)
Aquatic Organisms/physiology , Conservation of Natural Resources , Geologic Sediments/analysis , Invertebrates/physiology , Metals, Heavy , Mining , Animals , Biodiversity , Ecosystem , Metals, Heavy/analysis , Pacific Ocean , Population Density , Population Dynamics , Video Recording
11.
PLoS One ; 10(2): e0117790, 2015.
Article in English | MEDLINE | ID: mdl-25671322

ABSTRACT

Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal capabilities were not as important.


Subject(s)
Aquatic Organisms/classification , Classification/methods , Animals , Biodiversity , Minerals/chemistry , Molecular Sequence Data , Pacific Ocean
12.
PLoS One ; 6(8): e22588, 2011.
Article in English | MEDLINE | ID: mdl-21829635

ABSTRACT

The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods.


Subject(s)
Ecosystem , Animals , Biodiversity , Humans , Marine Biology , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...