Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 32(5): 1407-1424, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38429927

ABSTRACT

Maintaining functional adipose innervation is critical for metabolic health. We found that subcutaneous white adipose tissue (scWAT) undergoes peripheral neuropathy (PN) with obesity, diabetes, and aging (reduced small-fiber innervation and nerve/synaptic/growth-cone/vesicle markers, altered nerve activity). Unlike with nerve injuries, peripheral nerves do not regenerate with PN, and therefore new therapies are needed for treatment of this condition affecting 20-30 million Americans. Here, we validated a gene therapy approach using an adipocyte-tropic adeno-associated virus (AAV; serotype Rec2) to deliver neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) directly to scWAT to improve tissue-specific PN as a proof-of-concept approach. AAVRec2-BDNF intra-adipose delivery improved tissue innervation in obese/diabetic mice with PN, but after longer periods of dietary obesity there was reduced efficacy, revealing a key time window for therapies. AAVRec2-NGF also increased scWAT innervation in obese mice and was more effective than BDNF, likely because Rec2 targeted adipocytes, the tissue's endogenous NGF source. AAVRec2-NGF also worked well even after 25 weeks of dietary obesity, unlike BDNF, which likely needs a vector that targets its physiological cellular source (stromal vascular fraction cells). Given the differing effects of AAVs carrying NGF versus BDNF, a combined therapy may be ideal for PN.


Subject(s)
Adipocytes , Brain-Derived Neurotrophic Factor , Dependovirus , Genetic Therapy , Genetic Vectors , Obesity , Subcutaneous Fat , Animals , Dependovirus/genetics , Obesity/therapy , Obesity/metabolism , Mice , Genetic Therapy/methods , Adipocytes/metabolism , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Subcutaneous Fat/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Gene Transfer Techniques , Humans , Male , Peripheral Nervous System Diseases/therapy , Peripheral Nervous System Diseases/etiology , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/genetics , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...