Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bio Protoc ; 7(2): e2111, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-34458438

ABSTRACT

Sugarcane (interspecific hybrids of Saccharum species) is an economically important crop that provides 70% of raw table sugar production worldwide and contributes, in some countries, to bioethanol and electricity production. Leaf scald, caused by the bacterial plant pathogen Xanthomonas albilineans, is one of the major diseases of sugarcane. Dissemination of X. albilineans is mainly ensured by contaminated harvesting tools and infected stalk cuttings. However, some strains of this pathogen are transmitted by aerial means and are able to survive as epiphytes on the sugarcane phyllosphere before entering the leaves and causing disease. Here we present a protocol to estimate the capacity of attachment of X. albilineans to sugarcane leaves. Tissue-cultured sugarcane plantlets were immersed in a bacterial suspension of X. albilineans and leaf attachment of X. albilineans was determined by two methods: leaf imprinting (semi-quantitative method) and leaf washing/homogenization (quantitative method). These methods are important tools for evaluating pathogenicity of strains/mutants of the sugarcane leaf scald pathogen.

2.
Mol Plant Pathol ; 17(2): 236-46, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25962850

ABSTRACT

Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is a bacterial plant pathogen that is mainly spread by infected cuttings and contaminated harvesting tools. However, some strains of this pathogen are known to be spread by aerial means and are able to colonize the phyllosphere of sugarcane before entering the host plant and causing disease. The objective of this study was to identify the molecular factors involved in the survival or growth of X. albilineans on sugarcane leaves. We developed a bioassay to test for the attachment of X. albilineans on sugarcane leaves using tissue-cultured plantlets grown in vitro. Six mutants of strain XaFL07-1 affected in surface polysaccharide production completely lost their capacity to survive on the sugarcane leaf surface. These mutants produced more biofilm in vitro and accumulated more cellular poly-ß-hydroxybutyrate than the wild-type strain. A mutant affected in the production of small molecules (including potential biosurfactants) synthesized by non-ribosomal peptide synthetases (NRPSs) attached to the sugarcane leaves as well as the wild-type strain. Surprisingly, the attachment of bacteria on sugarcane leaves varied among mutants of the rpf gene cluster involved in bacterial quorum sensing. Therefore, quorum sensing may affect polysaccharide production, or both polysaccharides and quorum sensing may be involved in the survival or growth of X. albilineans on sugarcane leaves.


Subject(s)
Bacterial Adhesion , Microbial Viability , Plant Leaves/microbiology , Polysaccharides, Bacterial/metabolism , Quorum Sensing , Saccharum/microbiology , Xanthomonas/physiology , Biofilms , Biological Assay , Hydroxybutyrates , Multigene Family , Mutation/genetics , Organic Chemicals , Peptide Synthases/metabolism , Plasmids/metabolism , Polyesters , Surface Properties , Xanthomonas/genetics , Xanthomonas/growth & development , Xanthomonas/ultrastructure
3.
Open Biol ; 4: 130116, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24522883

ABSTRACT

Xanthomonas albilineans, the causal agent of sugarcane leaf scald, is missing the Hrp type III secretion system that is used by many Gram-negative bacteria to colonize their host. Until now, this pathogen was considered as strictly limited to the xylem of sugarcane. We used confocal laser scanning microscopy, immunocytochemistry and transmission electron microscopy (TEM) to investigate the localization of X. albilineans in diseased sugarcane. Sugarcane plants were inoculated with strains of the pathogen labelled with a green fluorescent protein. Confocal microscopy observations of symptomatic leaves confirmed the presence of the pathogen in the protoxylem and metaxylem; however, X. albilineans was also observed in phloem, parenchyma and bulliform cells of the infected leaves. Similarly, vascular bundles of infected sugarcane stalks were invaded by X. albilineans. Surprisingly, the pathogen was also observed in apparently intact storage cells of the stalk and in intercellular spaces between these cells. Most of these observations made by confocal microscopy were confirmed by TEM. The pathogen exits the xylem following cell wall and middle lamellae degradation, thus creating openings to reach parenchyma cells. This is the first description of a plant pathogenic vascular bacterium invading apparently intact non-vascular plant tissues and multiplying in parenchyma cells.


Subject(s)
Genome, Bacterial , Saccharum/microbiology , Xanthomonas/genetics , Xanthomonas/physiology , Microscopy, Confocal , Plant Diseases/microbiology , Plant Leaves/microbiology , Xanthomonas/pathogenicity , Xylem/microbiology
4.
Mol Plant Microbe Interact ; 26(10): 1200-10, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23758144

ABSTRACT

Several EZ-Tn5 insertions in gene locus XALc_0557 (OmpA1) of the sugarcane leaf scald pathogen Xanthomonas albilineans XaFL07-1 were previously found to strongly affect pathogenicity and endophytic stalk colonization. XALc_0557 has a predicted OmpA N-terminal outer membrane channel (OMC) domain and an OmpA C-like domain. Further analysis of mutant M468, with an EZ-Tn5 insertion in the upstream OMC domain coding region, revealed impaired epiphytic and endophytic leaf survival, impaired resistance to sodium dodecyl sulfate (SDS), structural defects in the outer membrane (OM), and hyperproduction of OM vesicles. Cloned full-length XALc_0557 complemented M468 for all phenotypes tested, including pathogenicity, resistance to SDS, and ability to survive both endophytically and epiphytically. Another construct, pCT47.3, which expressed only the C-like domain of XALc_0557, restored resistance to SDS in M468 but failed to complement any other mutant phenotype, indicating that the C-like domain functioned independently of the OMC domain to help maintain OM integrity. pCT47.3 also complemented pathogenicity, resistance to SDS, and stalk colonization in mutant M1152, which carries an EZ-Tn5 insert in the C-like coding region, indicating that both predicted domains are modular and necessary but neither is sufficient for X. albilineans pathogenicity, endophytic survival in, and epiphytic survival on sugarcane.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Plant Diseases/microbiology , Saccharum/microbiology , Xanthomonas/genetics , Bacterial Outer Membrane Proteins/genetics , Cell Membrane/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genetic Complementation Test , Microscopy, Electron, Transmission , Mutagenesis, Insertional , Phenotype , Plant Leaves/microbiology , Protein Structure, Tertiary , Sequence Analysis, DNA , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Xanthomonas/ultrastructure
5.
Microbiology (Reading) ; 159(Pt 6): 1149-1159, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23538716

ABSTRACT

The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.


Subject(s)
Gene Expression Regulation, Bacterial , Protein Kinases/metabolism , Saccharum/microbiology , Transcription Factors/metabolism , Xanthomonas/growth & development , Xanthomonas/pathogenicity , Gene Deletion , Plant Diseases/microbiology , Protein Kinases/genetics , Transcription Factors/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...