Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511911

ABSTRACT

Under the increasing global energy demand, the new European Union Biodiversity Strategy for 2030 encourages combinations of energy production systems compatible with biodiversity conservation; however, in photovoltaic parks, panels shadowing the effects on soil health and biodiversity are still unknown. This study (location: Northern Italy) aimed to evaluate the effect of ground-mounted photovoltaic (GMPV) systems on soil arthropod biodiversity, considering two parks with different vegetation management: site 1-grassland mowed with tractor; site 2-grassland managed with sheep and donkeys. Three conditions were identified in each park: under photovoltaic panel (row), between the panel rows (inter-row), and around the photovoltaic plant (control). The soil pH and organic matter (SOM), soil arthropod community, biodiversity, and soil quality index (e.g., QBS-ar index) were characterised. Differences between the two GMPVs were mainly driven by the SOM content (higher values where grazing animals were present). No differences were observed in site 1, even if a high heterogeneity of results was observed for the soil biodiversity parameters under the panels. In site 2, SOM and pH, as well as arthropods biodiversity and QBS-ar, showed low values in the row. Soil fauna assemblages were also affected by ground-mounted panels, where Acarina, Collembola, Hymenoptera, and Hemiptera showed the lowest density in the row. This study suggests that ground-mounted solar panels had significant effects on below-ground soil fauna, and was more marked depending on the system management. Furthermore, the results obtained for the inter-row were similar to the control, suggesting that the area between the panel rows could be considered a good hotspot for soil biodiversity.

2.
Front Plant Sci ; 13: 907349, 2022.
Article in English | MEDLINE | ID: mdl-35941943

ABSTRACT

Plant Biostimulants (BSs) are a valid supplement to be considered for the integration of conventional fertilization practices. Research in the BS field keeps providing alternative products of various origin, which can be employed in organic and conventional agriculture. In this study, we investigated the biostimulant activity of the eluate obtained as a by-product from the industrial production of lactic acid bacteria on bare agricultural soil. Eluates utilization is in line with the circular economy principle, creating economical value for an industrial waste product. The research focused on the study of physical, chemical, biochemical, and microbiological changes occurring in agricultural soil treated with the biowaste eluate, applied at three different dosages. The final aim was to demonstrate if, and to what extent, the application of the eluate improved soil quality parameters and enhanced the presence of beneficial soil-borne microbial communities. Results indicate that a single application at the two lower dosages does not have a pronounced effect on the soil chemical parameters tested, and neither on the biochemical proprieties. Only the higher dosage applied reported an improvement in the enzymatic activities of ß-glucosidase and urease and in the chemical composition, showing a higher content of total, nitric and ammonia N, total K, and higher humification rate. On the other hand, microbial communities were strongly influenced at all dosages, showing a decrease in the bacterial biodiversity and an increase in the fungal biodiversity. Bioinformatic analysis revealed that some Operative Taxonomic Units (OTUs) promoted by the eluate application, belong to known plant growth promoting microbes. Some other OTUs, negatively influenced were attributed to known plant pathogens, mainly Fusarium spp. Finally, the ecotoxicological parameters were also determined and allowed to establish that no toxic effect occurred upon eluate applications onto soil.

3.
Environ Res ; 214(Pt 1): 113765, 2022 11.
Article in English | MEDLINE | ID: mdl-35792169

ABSTRACT

PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans) and PCBs (polychlorinated biphenyls) are ubiquitous persistent pollutants with reduced bioavailability, which bioremediation using soil fauna is still managed to treat. This research set out to: (i) study the suitability of earthworms (Eisenia fetida), alone and associated with plants (Lepidium sativum), for the decontamination of PCDD/F and PCB polluted soils in Brescia-Caffaro (Italy), at total and congener concentration levels; (ii) simulate the action of earthworms in groundwater contamination process and nutrient mobility. Five treatments were set up: (i) uncontaminated soil with E. fetida (NC); (ii) contaminated soil (C); (iii) contaminated soil with E. fetida (CEf); (iv) contaminated soil with L. sativum (CLs); (v) contaminated soil with E. fetida and L. sativum (CEfLs). PCBs and PCDD/Fs in the soil prior to testing were measured. Analysis was repeated in soil treatments and percolating water at the end of the test period (4 months). Dissolved nutrient concentrations were measured in percolated water. PCB and PCDD/F concentrations, initially 259333.33 ± 10867.89 ng/kg and 176 ± 10.69 ngTE/kg, were significantly reduced after 4 months in all treatments. Treatments did not differ in total PCBs concentration (from 160,000 ng/kg to 194,000 ng/kg), but CEfLs congeners concentrations were less environmentally threatening; CEf and CLs resulted in lower PCDD/Fs concentration (79.43 ± 3.34 ngTE/kg and 73.03 ± 4.09 ngTE/kg, respectively). The action of earthworms could enhance contaminants and soluble reactive phosphorous content in percolating water.


Subject(s)
Oligochaeta , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Soil Pollutants , Animals , Dibenzofurans , Dibenzofurans, Polychlorinated , Soil , Water
4.
Bioresour Technol ; 351: 126934, 2022 May.
Article in English | MEDLINE | ID: mdl-35248711

ABSTRACT

Bioplastics may be collected in the bio-waste treatment, which is often composed of anaerobic digestion and subsequent aerobic composting of the digestates. The aim of this study was to evaluate the degradability of polylactic acid (PLA) and starch-based bioplastics (SBB) spoons under industrial conditions. Biomethane potential (BMP) was measured and biogas production was monitored, while the quality of composts was assessed by phytotoxicity and ecotoxicity tests. The bioplastics disintegration resulted in 65.1 ± 4.6 % for PLA and ≤ 65.0 ± 7.4 % for SBB, not achieving the target set by UNI EN 13,432 standard, and several residues were found in compost. Phytotoxicity tests on seeds reported the lowest Germination Index for PLA elutriate, whereas a potential negative effect of SBB on soil fauna was detected. Further investigation is needed to assess the fate of these ever-growing materials under industrial conditions, and also evaluate the effects of residues in compost.


Subject(s)
Composting , Anaerobiosis , Polyesters , Soil , Starch
5.
Insects ; 11(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963103

ABSTRACT

The dramatic increase in soil degradation in the last few decades has led to the need to identify methods to define not only soil quality but also, in a holistic approach, soil health. In the past twenty years, indices based on living communities have been proposed alongside the already proven physical-chemical methods. Among them, some soil invertebrates have been included in monitoring programs as bioindicators of soil quality. Being an important portion of soil fauna, soil arthropods are involved in many soil processes such as organic matter decomposition and translocation, nutrient cycling, microflora activity regulation and bioturbation. Many studies have reported the use of soil arthropods to define soil quality; among taxa, some have been explored more in depth, typically Acari and Collembola, while generally less abundant groups, such as Palpigradi or Embioptera, have not been investigated much. This paper aims to evaluate and compare the use of different soil microarthropod taxa in soil degradation/quality studies to highlight which groups are the most reported for soil monitoring and which are the most sensitive to soil degradation. We have decided not to include the two most present and abundant taxa, Acari and Collembola, in this paper in consideration of the vast amount of existing literature and focus the discussion on the other microarthropod groups. We reported some studies for each taxon highlighting the use of the group as soil quality indicator. A brief section reporting some indices based on soil microarthropods is proposed at the end of this specific discussion. This paper can be considered as a reference point in the use of soil arthropods to estimate soil quality and health.

6.
Environ Sci Pollut Res Int ; 25(7): 6668-6679, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29260473

ABSTRACT

Biochar is a product of the thermal decomposition of biomass under a limited supply of oxygen and can be deriving from pyrolysis or gasification. As the product is rich in highly recalcitrant carbon, it has been proposed as a soil amendment to improve soil fertility and to stock carbon in soils. However, the contaminant compounds present in biochar could represent potential environmental threats. The gasification biochar is a promising by-product, but its effects on soil microarthropods are still nearly unknown. The aim of this study was to assess, using a prognosis approach, any ecotoxicological consequences of four biochars (conifer, poplar, grape marc, and wheat straw) on the springtail Folsomia candida. This was assessed through a series of tests: an avoidance behavior test, a survival and reproduction test, and a test based on the hatching of eggs. Biochars were tested at different concentrations (pulverized and diluted w/w with an artificial standard soil). The results showed that the springtails did not tend to avoid the biochars' substrates up to the rate of 2-5%, but any higher levels of concentration caused the animals to keep away from it. While mortality was negatively affected only in the grape marc biochar, reproduction was significantly reduced in all biochars considered. The hatching of the eggs was anticipated at even the lowest concentrations of herbaceous biochars, while a severe delay was observed in both concentrations tested of the conifer biochar. The endpoints considered were negatively affected by pH, polycyclic aromatic hydrocarbons, and heavy metals (in order of importance). The findings confirmed the potential adverse effects that gasification biochars could have on soil microarthropods and demonstrated the necessity of introducing these tests into biochar characterization protocols.


Subject(s)
Arthropods/drug effects , Charcoal/adverse effects , Animals , Avoidance Learning/drug effects , Longevity/drug effects , Populus/chemistry , Reproduction/drug effects , Toxicity Tests , Tracheophyta/chemistry , Triticum/chemistry , Vitis/chemistry
7.
Sci Total Environ ; 584-585: 1175-1184, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28161039

ABSTRACT

There are numerous aspects related to Tuber species, which have not been explored to date. Tuber aestivum Vitt. is an ectomycorrhizal fungus, that produces an area (called brûlé) around the host plant trunk, where the germination of other plants is inhibited. What happens inside this particular environment is still not sufficiently understood, especially in terms of soil fauna. A previous work showed that there were higher microarthropod abundances outside during the period of maximum activity of the mycelium. The genus Folsomia (Isotomidae Family; Order Collembola) showed higher abundance inside. The aim of this paper is to investigate the effects of brûlé, on soil parameters and soil fauna, during the annual biological cycle of T. aestivum. This study was carried out in nine spontaneous brûlés situated in Northern Italy (Emilia Romagna Region - Piacenza Province). Soil cores were collected in order to perform soil chemical and biological analysis. Moisture content, pH, organic matter content, total organic carbon were analyzed. Biodiversity and soil quality indices were applied. We found higher pH, lower carbon and organic matter content within the brûlé. Soil fauna community also showed some differences, seasonal and inside vs outside the brûlé. Some groups seem to be negatively affected by Tuber while Folsomia genus recorded almost always higher values inside. These results suggest that some organisms, such as some Collembola, might find a favorable environment inside the brûlé, while others - a negative one. However, these results should be compared by other analysis either on other Tuber species and on other soil organisms, such as nematodes and earthworms.


Subject(s)
Ascomycota , Biodiversity , Soil , Animals , Italy , Mycorrhizae
8.
Environ Monit Assess ; 188(3): 166, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26884353

ABSTRACT

Soil amendment with biochar has been proposed as effective in improving agricultural land fertility and carbon sequestration, although the characterisation and certification of biochar quality are still crucial for widespread acceptance for agronomic purposes. We describe here the effects of four biochars (conifer and poplar wood, grape marc, wheat straw) at increasing application rates (0.5, 1, 2, 5, 10, 20, 50% w/w) on both germination and root elongation of Cucumis sativus L., Lepidium sativum L. and Sorghum saccharatum Moench. The tested biochars varied in chemical properties, depending on the type and quality of the initial feedstock batch, polycyclic aromatic hydrocarbons (PAHs) being high in conifer and wheat straw, Cd in poplar and Cu in grape marc. We demonstrate that electrical conductivity and Cu negatively affected both germination and root elongation at ≥5% rate biochar, together with Zn at ≥10% and elevated pH at ≥20%. In all species, germination was less sensitive than root elongation, strongly decreasing at very high rates of chars from grape marc (>10%) and wheat straw (>50%), whereas root length was already affected at 0.5% of conifer and poplar in cucumber and sorghum, with marked impairment in all chars at >5%. As a general interpretation, we propose here logarithmic model for robust root phytotoxicity in sorghum, based on biochar Zn content, which explains 66% of variability over the whole dosage range tested. We conclude that metal contamination is a crucial quality parameter for biochar safety, and that root elongation represents a stable test for assessing phytotoxicity at recommended in-field amendment rates (<1-2%).


Subject(s)
Environmental Monitoring , Environmental Restoration and Remediation , Plant Roots/drug effects , Soil Pollutants/toxicity , Agriculture , Biological Assay , Carbon Sequestration , Charcoal/chemistry , Ecotoxicology , Lepidium sativum , Metals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Populus , Soil/chemistry , Soil Pollutants/analysis , Triticum , Wood/chemistry
9.
Bull Environ Contam Toxicol ; 92(4): 490-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24288040

ABSTRACT

In vitro short-term chronic phytotoxicity germination and root elongation test were applied to test the effects of nickel (Ni) in seed germination and root elongation in six plants species: Cucumis sativus (Cucurbitaceae), Lepidium sativum and Brassica nigra (Brassicaceae), Trifolium alexandrinum and Medicago sativa (Fabaceae), Phacelia tanacetifolia (Boraginaceae). A naturally Ni rich soil was used to compare the results obtained. Unlike root elongation, germination was not affected by Ni in any of the six species tested. EC50 values, calculated on the root elongation, showed that Ni toxicity decreases in the following order: P. tanacetifolia > B. nigra > C. sativus > L. sativum > M. sativa > T. alexandrinum. The test conducted using soil elutriate revealed a significantly lower effect in both seed germination and root elongation when compared to the results obtained using untreated soil. Conversely, the test performed on soil confirmed the high sensitivity of C. sativus, P. tanacetifolia and L. sativum to Ni.


Subject(s)
Environmental Monitoring/methods , Germination/drug effects , Nickel/toxicity , Plant Roots/drug effects , Soil Pollutants/toxicity , Nickel/analysis , Soil/chemistry , Soil Pollutants/analysis
10.
Environ Monit Assess ; 185(2): 1637-55, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22585401

ABSTRACT

The aim of this study is to assess soil quality in Mediterranean forests of Central Italy, from evergreen to deciduous, with different types of management (coppice vs. high forest vs. secondary old growth) and compaction impacts (machinery vs. recreational). Soil quality was evaluated studying soil microarthropod communities and applying a biological index (QBS-ar) based on the concept that the higher is the soil quality, the higher will be the number of microarthropod groups well adapted to the soil habitat. Our results confirm that hardwood soils are characterised by the highest biodiversity level among terrestrial communities and by a well-structured and mature microarthropod community, which is typical of stable ecosystems (QBS value, >200). While silvicultural practices and forest composition do not seem to influence QBS-ar values or microarthropod community structure, the index is very efficient in detecting soil impacts (soil compaction due to logging activities). Several taxa (Protura, Diplura, Coleoptera adults, Pauropoda, Diplopoda, Symphyla, Chilopoda, Diptera larvae and Opiliones) react negatively to soil compaction and degradation (QBS value, <150). In particular, Protura, Diplura, Symphyla and Pauropoda, are taxonomic groups linked to undisturbed soil. This index could also be a useful tool in monitoring soil biodiversity in protected areas and in urban forestry to prevent the negative effects of trampling. QBS-ar is a candidate index for biomonitoring of soil microarthropod biodiversity across the landscape to provide guidance for the sustainable management of renewable resource and nature conservation.


Subject(s)
Arthropods/classification , Biodiversity , Ecosystem , Animals , Arthropods/growth & development , Environmental Monitoring , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Industry , Italy , Recreation , Soil/chemistry
11.
Chemosphere ; 90(3): 1267-73, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23107056

ABSTRACT

Eco-toxicological or bioassay tests have been intensively discussed as tools for the evaluation of soil quality. Tests using soil organisms, including microarthropods and plants, allow direct estimates to be made of important soil characteristics and functions. In this study we compared the results obtained by two in vitro standard bioassays following ISO or OECD guidelines: (i) the short term-chronic phytotoxicity germination and root elongation test using three different plant species Cucumis sativus L. (Cucurbitaceae), Lepidium sativum L. (Brassicaceae), and Medicago sativa L. (Fabaceae) and (ii) the inhibition of reproduction of Folsomia candida (Collembola) by soil pollutants to investigate the toxicity of a serpentine soil present in the Italian Apennines, rich in heavy metals such as Ni, Cr, and Co. In addition, microarthropod communities were characterised to evaluate the effects of metal contents on the soil fauna in natural conditions. Abundances, Acari/Collembola ratio, biodiversity indices and the QBS-ar index were calculated. Our results demonstrate that the two in vitro tests distinguish differences correlated with metal and organic matter contents in four sub-sites within the serpentinite. Soil fauna characterisation, not previously performed on serpentine soils, revealed differences in the most vulnerable and adapted groups of microarthropods to soil among the four sub-sites: the microarthropod community was found to be rich in term of biodiversity in the sub-site characterised by a lower metal content and a higher organic matter content and vegetation.


Subject(s)
Arthropods/drug effects , Brassicaceae/drug effects , Cucurbitaceae/drug effects , Fabaceae/drug effects , Metals, Heavy/toxicity , Soil Pollutants/toxicity , Animals , Arthropods/physiology , Asbestos, Serpentine/chemistry , Biodiversity , Biological Assay , Brassicaceae/physiology , Cucurbitaceae/physiology , Fabaceae/physiology , Germination/drug effects , Reproduction/drug effects , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...