Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 46: 44-53, 2017 08.
Article in English | MEDLINE | ID: mdl-28602641

ABSTRACT

Instrumented knee replacements can provide in vivo data quantifying physiological loads acting on the knee. To date instrumented mobile unicompartmental knee replacements (UKR) have not been realised. Ideally instrumentation would be embedded within the polyethylene bearing. This study investigated the feasibility of an embedded flexible capacitive load sensor. A novel flexible capacitive load sensor was developed which could be incorporated into standard manufacturing of compression moulded polyethylene bearings. Dynamic experiments were performed to determine the characteristics of the sensor on a uniaxial servo-hydraulic material testing machine. The instrumented bearing was measured at sinusoidal frequencies between 0.1 and 10Hz, allowing for measurement of typical gait load magnitudes and frequencies. These correspond to frequencies of interest in physiological loading. The loads that were applied were a static load of 390N, corresponding to an equivalent body weight load for UKR, and a dynamic load of ±293N. The frequency transfer response of the sensor suggests a low pass filter response with a -3dB frequency of 10Hz. The proposed embedded capacitive load sensor was shown to be applicable for measuring in vivo loads within a polyethylene mobile UKR bearing.


Subject(s)
Arthroplasty, Replacement, Knee/instrumentation , Proof of Concept Study , Electricity , Materials Testing , Prosthesis Design , Weight-Bearing
2.
Knee ; 21(1): 304-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23673196

ABSTRACT

BACKGROUND: The Oxford Unicompartmental Knee Replacement (OUKR) uses a mobile bearing to minimise wear. Bearing dislocation is a problem in the lateral compartment as the ligaments are loose in flexion. A domed tibial component has been introduced to minimise the risk of dislocation, yet they still occur, particularly medially. The aim of this mechanical study was to compare the domed and flat tibial components and to identify surgical factors that influence the risk of dislocation. METHOD: A jig was constructed to assess the amount of vertical distraction of the lateral OUKR for a dislocation to occur. Three methods of dislocation were assessed: laterally, medially, 'over the wall' and anteriorly. The study focused on medial dislocation. RESULTS: Significantly (p=0.02) greater vertical distraction was required to dislocate the bearing with the domed tibia rather than the flat. For medial dislocation bearing distance from the wall, femoral component external rotation and tibial rotation were associated with significantly less distraction for dislocation. With the optimal technique with the domed tibia the distraction required to dislocate the bearing medially was 6.4 mm, whereas with poor technique it was 4.6 mm. CONCLUSIONS: This study suggests that to minimise the risk of dislocation the domed tibia should be used. The component should be implanted so the bearing is close to the wall, but does not hit it, and in flexion the femoral and tibial components should be neutrally aligned.


Subject(s)
Knee Dislocation/prevention & control , Knee Prosthesis , Materials Testing , Models, Biological , Prosthesis Design , Arthroplasty, Replacement, Knee , Humans , Knee Dislocation/etiology , Knee Prosthesis/adverse effects , Prosthesis Fitting/methods , Rotation , Tibia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...