Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 56: e12547, 2023.
Article in English | MEDLINE | ID: mdl-36995873

ABSTRACT

The main goal of this study was to determine whether oxidative imbalance mediated by AT1 receptor (AT1R) is responsible for deleterious endothelial responses to mental stress (MS) in overweight/obese class I men. Fifteen overweight/obese men (27±7 years old; 29.8±2.6 kg/m2) participated in three randomized experimental sessions with oral administration of the AT1R blocker olmesartan (40 mg; AT1R blockade) or ascorbic acid (AA; 3g) infusion or placebo [both intravenously (0.9% NaCl) and orally]. After two hours, endothelial function was determined by flow-mediated dilation (FMD) before (baseline), 30 min (30MS), and 60 min (60MS) after a five-minute acute MS session (Stroop Color Word Test). Blood was collected before (baseline), during MS, and 60 min after MS for redox homeostasis profiling: lipid peroxidation (TBARS; thiobarbituric acid reactive species), protein carbonylation, and catalase activity by colorimetry and superoxide dismutase (SOD) activity by an ELISA kit. At the placebo session, FMD significantly decreased 30MS (P=0.05). When compared to baseline, TBARS (P<0.02), protein carbonylation (P<0.01), catalase (P<0.01), and SOD (P<0.01) increased during the placebo session. During AT1R blockade, FMD increased 30 min after MS (P=0.01 vs baseline; P<0.01 vs placebo), while AA infusion increased FMD only 60 min after MS. No differences were observed during MS with the AT1R blockade and AA regarding TBARS, protein carbonylation, catalase, and SOD. AT1R-mediated redox imbalances played an important role in endothelial dysfunction to mental stress.


Subject(s)
Obesity , Stress, Psychological , Humans , Stress, Psychological/pathology , Endothelial Cells/pathology , Oxidative Stress , Male , Obesity/complications , Obesity/metabolism , Obesity/pathology , Receptor, Angiotensin, Type 1/metabolism
2.
Braz. j. med. biol. res ; 56: e12547, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1430021

ABSTRACT

The main goal of this study was to determine whether oxidative imbalance mediated by AT1 receptor (AT1R) is responsible for deleterious endothelial responses to mental stress (MS) in overweight/obese class I men. Fifteen overweight/obese men (27±7 years old; 29.8±2.6 kg/m2) participated in three randomized experimental sessions with oral administration of the AT1R blocker olmesartan (40 mg; AT1R blockade) or ascorbic acid (AA; 3g) infusion or placebo [both intravenously (0.9% NaCl) and orally]. After two hours, endothelial function was determined by flow-mediated dilation (FMD) before (baseline), 30 min (30MS), and 60 min (60MS) after a five-minute acute MS session (Stroop Color Word Test). Blood was collected before (baseline), during MS, and 60 min after MS for redox homeostasis profiling: lipid peroxidation (TBARS; thiobarbituric acid reactive species), protein carbonylation, and catalase activity by colorimetry and superoxide dismutase (SOD) activity by an ELISA kit. At the placebo session, FMD significantly decreased 30MS (P=0.05). When compared to baseline, TBARS (P<0.02), protein carbonylation (P<0.01), catalase (P<0.01), and SOD (P<0.01) increased during the placebo session. During AT1R blockade, FMD increased 30 min after MS (P=0.01 vs baseline; P<0.01 vs placebo), while AA infusion increased FMD only 60 min after MS. No differences were observed during MS with the AT1R blockade and AA regarding TBARS, protein carbonylation, catalase, and SOD. AT1R-mediated redox imbalances played an important role in endothelial dysfunction to mental stress.

3.
Braz J Med Biol Res ; 55: e12110, 2022.
Article in English | MEDLINE | ID: mdl-35703682

ABSTRACT

In preparation for tracheal intubation during induction of anesthesia, the patient may be ventilated with 100% oxygen. To investigate the impact of acute isocapnic hyperoxia on endothelial activation and vascular remodeling, ten healthy young men (24±3 years) were exposed to 5-min normoxia (21% O2) and 10-min hyperoxia trials (100% O2). During hyperoxia, intercellular adhesion molecules (ICAM-1) (hyperoxia: 4.16±0.85 vs normoxia: 3.51±0.84 ng/mL, P=0.04) and tissue inhibitor matrix metalloproteinase 1 (TIMP-1) (hyperoxia: 8.40±3.84 vs normoxia: 5.73±2.15 pg/mL, P=0.04) increased, whereas matrix metalloproteinase (MMP-9) activity (hyperoxia: 0.53±0.11 vs normoxia: 0.68±0.18 A.U., P=0.03) decreased compared to the normoxia trial. We concluded that even short exposure to 100% oxygen may affect endothelial activation and vascular remodeling.


Subject(s)
Hyperoxia , Cell Adhesion Molecules , Humans , Male , Oxygen , Oxygen Consumption/physiology , Vascular Remodeling
4.
Braz. j. med. biol. res ; 55: e12110, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1384141

ABSTRACT

In preparation for tracheal intubation during induction of anesthesia, the patient may be ventilated with 100% oxygen. To investigate the impact of acute isocapnic hyperoxia on endothelial activation and vascular remodeling, ten healthy young men (24±3 years) were exposed to 5-min normoxia (21% O2) and 10-min hyperoxia trials (100% O2). During hyperoxia, intercellular adhesion molecules (ICAM-1) (hyperoxia: 4.16±0.85 vs normoxia: 3.51±0.84 ng/mL, P=0.04) and tissue inhibitor matrix metalloproteinase 1 (TIMP-1) (hyperoxia: 8.40±3.84 vs normoxia: 5.73±2.15 pg/mL, P=0.04) increased, whereas matrix metalloproteinase (MMP-9) activity (hyperoxia: 0.53±0.11 vs normoxia: 0.68±0.18 A.U., P=0.03) decreased compared to the normoxia trial. We concluded that even short exposure to 100% oxygen may affect endothelial activation and vascular remodeling.

5.
Life Sci ; 250: 117554, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32184123

ABSTRACT

BACKGROUND: Mental stress (MS) is related to endothelial dysfunction in overweight/obese men. It is believed that the pro-oxidant profile, associated with an imbalance in the vascular remodeling process, may contribute to deleterious effects of MS on endothelial function. However, it is unknown whether administration of ascorbic acid (AA), a potent antioxidant, can prevent oxidative and remodeling dysfunction during MS in these subjects. METHODS: Fourteen overweight/obese grade I men (27 ± 7 years; 29.7 ± 2.6 kg·m-2) underwent the Stroop Color Word Test for 5 min to induce MS after AA (3 g) or placebo (PL, 0.9% NaCl) intravenous infusions. Venous blood samples were collected at baseline and the last minute of MS to measure nitrite concentration (chemiluminescence), protein carbonylation, thiobarbituric acid reactive substances (TBARS) and catalase activity (colorimetric assays), superoxide dismutase (SOD; immunoenzymatic assay), activities of active/inactive (pro) forms of metalloproteinases-9 and -2 (MMP; zymography) and its respective tissue inhibitors concentration (TIMP-1 and TIMP-2; immunoenzymatic assays). RESULTS: At baseline, MMP-9 activity (p < 0.01), the MMP-9/proMMP-9 ratio (p = 0.02) and TIMP-1 concentration (p = 0.05) were reduced, whereas proMPP-9 activity was increased (p = 0.02) after AA compared to PL infusion. After PL infusion, MS increased protein carbonylation (p < 0.01), catalase (p < 0.01), and the MMP-9/proMMP-9 ratio (p = 0.04) when compared to baseline. AA infusion reduced protein carbonylation (p = 0.02), MMP-9 activity (p < 0.01), and MMP-9/pro-MMP-9 ratio (p < 0.01), while SOD (p = 0.04 vs baseline), proMPP-9 (p < 0.01 vs PL), MMP-2 (p < 0.01 vs PL) and TIMP-2 (p = 0.02 vs baseline) remained elevated during MS. CONCLUSIONS: AA appears to minimize the oxidative imbalance and vascular remodeling induced by MS.


Subject(s)
Ascorbic Acid/pharmacology , Obesity/psychology , Overweight/psychology , Stress, Psychological , Vascular Remodeling/drug effects , Adult , Antioxidants/metabolism , Catalase/metabolism , Cross-Over Studies , Endothelium, Vascular/pathology , Humans , Luminescence , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Oxidants/metabolism , Protein Carbonylation , Risk Factors , Stroop Test , Superoxide Dismutase/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...