Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Chromatogr A ; 922(1-2): 37-50, 2001 Jul 13.
Article in English | MEDLINE | ID: mdl-11486885

ABSTRACT

Chemical bonding reaction and immobilization through low energy radiation (heating) have been investigated to fix a side-chain liquid crystalline polymer (SC-LCP) on silica particles in order to use the resulting modified silica in normal-phase HPLC. Highly stable chromatographic stationary phases are observed under excellent polymer solvent flow conditions (THF) for both methods and better column efficiencies are also exhibited towards PAHs' separation compared to the classical coated stationary phase. The characterization of these new stationary phases and the rationale for improved column stability have been investigated by solid state 13C and 29Si CP/MAS NMR spectroscopy. It is clearly shown that the chemical bonding is achieved by the classical hydrosilylation reaction between PHMS chains and vinyl modified silica. The bonded polymer is likely a copolymer than a homopolymer. The immobilization of the SC-LCP by heating results in the breaking of Si-O-Si bonds of the polysiloxane chain after the attack of the silica surface silanols. Applications to fullerenes and carotenes separation of these bonded stationary phases are compared to the separation power of a classical monomeric C18 stationary phase in NP-HPLC as n-hexane-toluene or methyl-tertiobutyl ether-methanol mixtures.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Polymers/chemistry , Silicon Dioxide/chemistry , Crystallization , Polycyclic Compounds/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL