Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 18: 1390557, 2024.
Article in English | MEDLINE | ID: mdl-38832356

ABSTRACT

Insects detect odorants using two large families of heteromeric receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs). Most OR and IR genes encode odorant-binding "tuning" subunits, whereas four (Orco, Ir8a, Ir25a, and Ir76b) encode co-receptor subunits required for receptor function. Olfactory neurons are thought to degenerate in the absence of Orco in ants and bees, and limited data suggest this may happen to some olfactory neurons in Drosophila fruit flies as well. Here, we thoroughly examined the role of co-receptors on olfactory neuron survival in Drosophila. Leveraging knowledge that olfactory neuron classes are defined by the expression of different tuning receptors, we used tuning receptor expression in antennal transcriptomes as a proxy for the survival of distinct olfactory neuron classes. Consistent with olfactory neuron degeneration, expression of many OR-family tuning receptors is decreased in Orco mutants relative to controls, and transcript loss is progressive with age. The effects of Orco are highly receptor-dependent, with expression of some receptor transcripts nearly eliminated and others unaffected. Surprisingly, further studies revealed that olfactory neuron classes with reduced tuning receptor expression generally survive in Orco mutant flies. Furthermore, there is little apoptosis or neuronal loss in the antenna of these flies. We went on to investigate the effects of IR family co-receptor mutants using similar approaches and found that expression of IR tuning receptors is decreased in the absence of Ir8a and Ir25a, but not Ir76b. As in Orco mutants, Ir8a-dependent olfactory neurons mostly endure despite near-absent expression of associated tuning receptors. Finally, we used differential expression analysis to identify other antennal genes whose expression is changed in IR and OR co-receptor mutants. Taken together, our data indicate that odorant co-receptors are necessary for maintaining expression of many tuning receptors at the mRNA level. Further, most Drosophila olfactory neurons persist in OR and IR co-receptor mutants, suggesting that the impact of co-receptors on neuronal survival may vary across insect species.

2.
Elife ; 112022 04 20.
Article in English | MEDLINE | ID: mdl-35442190

ABSTRACT

Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Chemoreceptor Cells/metabolism , Drosophila melanogaster/physiology , Olfactory Receptor Neurons/physiology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell
3.
Front Cell Neurosci ; 15: 759238, 2021.
Article in English | MEDLINE | ID: mdl-34867202

ABSTRACT

Two large families of olfactory receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs), mediate responses to most odors in the insect olfactory system. Individual odorant binding "tuning" OrX receptors are expressed by olfactory neurons in basiconic and trichoid sensilla and require the co-receptor Orco. The situation for IRs is more complex. Different tuning IrX receptors are expressed by olfactory neurons in coeloconic sensilla and rely on either the Ir25a or Ir8a co-receptors; some evidence suggests that Ir76b may also act as a co-receptor, but its function has not been systematically examined. Surprisingly, recent data indicate that nearly all coeloconic olfactory neurons co-express Ir25a, Ir8a, and Ir76b. Here, we demonstrate that Ir76b and Ir25a function together in all amine-sensing olfactory receptor neurons. In most neurons, loss of either co-receptor abolishes amine responses. In contrast, amine responses persist in the absence of Ir76b or Ir25a in ac1 sensilla but are lost in a double mutant. We show that responses mediated by acid-sensing neurons do not require Ir76b, despite their expression of this co-receptor. Our study also demonstrates that one population of coeloconic olfactory neurons exhibits Ir76b/Ir25a-dependent and Orco-dependent responses to distinct odorants. Together, our data establish the role of Ir76b as a bona fide co-receptor, which acts in partnership with Ir25a. Given that these co-receptors are among the most highly conserved olfactory receptors and are often co-expressed in chemosensory neurons, our data suggest Ir76b and Ir25a also work in tandem in other insects.

4.
Sci Rep ; 11(1): 20530, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654888

ABSTRACT

Members of the cytochrome p450 (CYP) enzyme family are abundantly expressed in insect olfactory tissues, where they are thought to act as Odorant Degrading Enzymes (ODEs). However, their contribution to olfactory signaling in vivo is poorly understood. This is due in part to the challenge of identifying which of the dozens of antennal-expressed CYPs might inactivate a given odorant. Here, we tested a high-throughput deorphanization strategy in Drosophila to identify CYPs that are transcriptionally induced by exposure to odorants. We discovered three CYPs selectively upregulated by geranyl acetate using transcriptional profiling. Although these CYPs are broadly expressed in the antenna in non-neuronal cells, electrophysiological recordings from CYP mutants did not reveal any changes in olfactory neuron responses to this odorant. Neurons were desensitized by pre-exposing flies to the odorant, but this effect was similar in CYP mutants. Together, our data suggest that the induction of a CYP gene by an odorant does not necessarily indicate a role for that CYP in neuronal responses to that odorant. We go on to show that some CYPs have highly restricted expression patterns in the antenna, and suggest that such CYPs may be useful candidates for further studies on olfactory CYP function.


Subject(s)
Arthropod Antennae/enzymology , Cytochrome P-450 Enzyme System/metabolism , Drosophila/enzymology , Smell/physiology , Acetates , Acyclic Monoterpenes , Animals , Female , Insect Proteins/metabolism , Male , Up-Regulation
5.
Curr Biol ; 31(15): 3382-3390.e7, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34111404

ABSTRACT

Numerous hematophagous insects are attracted to ammonia, a volatile released in human sweat and breath.1-3 Low levels of ammonia also attract non-biting insects such as the genetic model organism Drosophila melanogaster and several species of agricultural pests.4,5 Two families of ligand-gated ion channels function as olfactory receptors in insects,6-10 and studies have linked ammonia sensitivity to a particular olfactory receptor in Drosophila.5,11,12 Given the widespread importance of ammonia to insect behavior, it is surprising that the genomes of most insects lack an ortholog of this gene.6 Here, we show that canonical olfactory receptors are not necessary for responses to ammonia in Drosophila. Instead, we demonstrate that a member of the ancient electrogenic ammonium transporter family, Amt, is likely a new type of olfactory receptor. We report two hitherto unidentified olfactory neuron populations that mediate neuronal and behavioral responses to ammonia in Drosophila. Their endogenous ammonia responses are lost in Amt mutant flies, and ectopic expression of either Drosophila or Anopheles Amt confers ammonia sensitivity. These results suggest that Amt is the first transporter known to function as an olfactory receptor in animals and that its function may be conserved across insect species.


Subject(s)
Ammonium Compounds , Drosophila Proteins , Drosophila melanogaster , Olfactory Receptor Neurons , Receptors, Odorant , Ammonia , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Receptors, Odorant/genetics
6.
G3 (Bethesda) ; 9(11): 3753-3771, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31527046

ABSTRACT

Repellent odors are widely used to prevent insect-borne diseases, making it imperative to identify the conserved molecular underpinnings of their olfactory systems. Currently, little is known about the molecules supporting odor signaling beyond the odor receptors themselves. Most known molecules function in one of two classes of olfactory sensilla, single-walled or double-walled, which have differing morphology and odor response profiles. Here, we took two approaches to discover novel genes that contribute to insect olfaction in the periphery. We transcriptionally profiled Drosophila melanogaster amos mutants that lack trichoid and basiconic sensilla, the single-walled sensilla in this species. This revealed 187 genes whose expression is enriched in these sensilla, including pickpocket ion channels and neuromodulator GPCRs that could mediate signaling pathways unique to single-walled sensilla. For our second approach, we computationally identified 141 antennal-enriched (AE) genes that are more than ten times as abundant in D. melanogaster antennae as in other tissues or whole-body extracts, and are thus likely to play a role in olfaction. We identified unambiguous orthologs of AE genes in the genomes of four distantly related insect species, and most identified orthologs were expressed in the antenna of these species. Further analysis revealed that nearly half of the 141 AE genes are localized specifically to either single or double-walled sensilla. Functional annotation suggests the AE genes include signaling molecules and enzymes that could be involved in odorant degradation. Together, these two resources provide a foundation for future studies investigating conserved mechanisms of odor signaling.


Subject(s)
Arthropod Antennae/metabolism , Drosophila melanogaster/genetics , Smell/genetics , Animals , Drosophila Proteins/genetics , Female , Genes, Insect , High-Throughput Nucleotide Sequencing , Male , Real-Time Polymerase Chain Reaction , Transcriptome
7.
PLoS Genet ; 10(11): e1004810, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25412082

ABSTRACT

Many insect vectors of disease detect their hosts through olfactory cues, and thus it is of great interest to understand better how odors are encoded. However, little is known about the molecular underpinnings that support the unique function of coeloconic sensilla, an ancient and conserved class of sensilla that detect amines and acids, including components of human odor that are cues for many insect vectors. Here, we generate antennal transcriptome databases both for wild type Drosophila and for a mutant that lacks coeloconic sensilla. We use these resources to identify genes whose expression is highly enriched in coeloconic sensilla, including many genes not previously implicated in olfaction. Among them, we identify an ammonium transporter gene that is essential for ammonia responses in a class of coeloconic olfactory receptor neurons (ORNs), but is not required for responses to other odorants. Surprisingly, the transporter is not expressed in ORNs, but rather in neighboring auxiliary cells. Thus, our data reveal an unexpected non-cell autonomous role for a component that is essential to the olfactory response to ammonia. The defective response observed in a Drosophila mutant of this gene is rescued by its Anopheles ortholog, and orthologs are found in virtually all insect species examined, suggesting that its role is conserved. Taken together, our results provide a quantitative analysis of gene expression in the primary olfactory organ of Drosophila, identify molecular components of an ancient class of olfactory sensilla, and reveal that auxiliary cells, and not simply ORNs, play an essential role in the coding of an odor that is a critical host cue for many insect vectors of human disease.


Subject(s)
Ammonia/metabolism , Cation Transport Proteins/genetics , Drosophila Proteins/genetics , Olfactory Receptor Neurons/metabolism , Smell/genetics , Transcriptome/genetics , Animals , Drosophila/genetics , Drosophila/physiology , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Insect Vectors/genetics , Mutation , Odorants/analysis , Sensilla/metabolism , Smell/physiology
8.
Neuron ; 83(4): 850-65, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25123314

ABSTRACT

Insects use taste to evaluate food, hosts, and mates. Drosophila has many "orphan" taste neurons that express no known taste receptors. The Ionotropic Receptor (IR) superfamily is best known for its role in olfaction, but virtually nothing is known about a clade of ∼35 members, the IR20a clade. Here, a comprehensive analysis of this clade reveals expression in all taste organs of the fly. Some members are expressed in orphan taste neurons, whereas others are coexpressed with bitter- or sugar-sensing Gustatory receptor (Gr) genes. Analysis of the closely related IR52c and IR52d genes reveals signatures of adaptive evolution, roles in male mating behavior, and sexually dimorphic expression in neurons of the male foreleg, which contacts females during courtship. These neurons are activated by conspecific females and contact a neural circuit for sexual behavior. Together, these results greatly expand the repertoire of candidate taste and pheromone receptors in the fly.


Subject(s)
Drosophila Proteins/physiology , Receptors, Cell Surface/physiology , Receptors, Pheromone/physiology , Taste/physiology , Animals , Drosophila Proteins/biosynthesis , Drosophila melanogaster , Female , Gene Expression , Male , Molecular Sequence Data , Neurons/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology
9.
Nature ; 492(7427): 66-71, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23172146

ABSTRACT

Diverse sensory organs, including mammalian taste buds and insect chemosensory sensilla, show a marked compartmentalization of receptor cells; however, the functional impact of this organization remains unclear. Here we show that compartmentalized Drosophila olfactory receptor neurons (ORNs) communicate with each other directly. The sustained response of one ORN is inhibited by the transient activation of a neighbouring ORN. Mechanistically, such lateral inhibition does not depend on synapses and is probably mediated by ephaptic coupling. Moreover, lateral inhibition in the periphery can modulate olfactory behaviour. Together, the results show that integration of olfactory information can occur via lateral interactions between ORNs. Inhibition of a sustained response by a transient response may provide a means of encoding salience. Finally, a CO(2)-sensitive ORN in the malaria mosquito Anopheles can also be inhibited by excitation of an adjacent ORN, suggesting a broad occurrence of lateral inhibition in insects and possible applications in insect control.


Subject(s)
Neural Inhibition/physiology , Olfactory Pathways/physiology , Olfactory Receptor Neurons/metabolism , Synapses , Animals , Anopheles/drug effects , Anopheles/physiology , Carbon Dioxide/pharmacology , Dose-Response Relationship, Drug , Drosophila melanogaster/cytology , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Female , Neural Inhibition/drug effects , Olfactory Pathways/drug effects , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/drug effects , Sensilla/cytology , Sensilla/drug effects , Sensilla/innervation , Sensilla/physiology , Smell/drug effects , Smell/physiology , Synaptic Transmission/drug effects
10.
Cell ; 139(1): 45-59, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19804753

ABSTRACT

Remarkable advances in our understanding of olfactory perception have been made in recent years, including the discovery of new mechanisms of olfactory signaling and new principles of olfactory processing. Here, we discuss the insight that has been gained into the receptors, cells, and circuits that underlie the sense of smell.


Subject(s)
Olfactory Perception , Olfactory Receptor Neurons/physiology , Receptors, Odorant/physiology , Animals , Humans , Olfactory Pathways
11.
Neuropharmacology ; 56(1): 22-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18634809

ABSTRACT

Transmembrane AMPA receptor regulatory proteins (TARPs), including gamma-2, gamma-3, gamma-4, and gamma-8, are auxiliary subunits for AMPA receptors. Based on studies in single knockout mice, it has been suggested that nearly all native AMPA receptors are associated with TARPs. To study the interplay between TARP family members and AMPA receptors in vivo, we generated mice lacking multiple TARPs. Triple knockout mice lacking gamma-3, gamma-4, and gamma-8 are viable and fertile, and synaptic AMPA receptor activity is reduced to a level comparable to that seen in gamma-8 single knockout mice. In contrast, triple knockout mice lacking gamma-2, gamma-3, and either gamma-4 or gamma-8 cannot survive ex utero. In particular, gamma-2, gamma-3, gamma-4 triple knockout mice are born apneic and paralyzed, despite normal AMPA receptor function in cortical and spinal neurons. We found that gamma-8 is expressed at low levels in early postnatal mice and regulates AMPA receptor levels at this developmental time period. Thus, the early expression of gamma-8 may be responsible for maintaining AMPA receptor functions in neonatal neurons. Together, our data indicate that TARPs, in particular gamma-2, are essential for early development, and that most neurons express multiple members of this functionally redundant protein family.


Subject(s)
Membrane Proteins/physiology , Neurons/physiology , Analysis of Variance , Animals , Animals, Newborn , Calcium Channels , Cells, Cultured , Embryo, Mammalian , Excitatory Amino Acid Agents/pharmacology , Hippocampus/cytology , Hippocampus/physiology , In Vitro Techniques , Membrane Potentials/drug effects , Membrane Potentials/genetics , Membrane Proteins/classification , Membrane Proteins/deficiency , Mice , Mice, Knockout , Neurons/drug effects , Patch-Clamp Techniques , Receptors, AMPA/physiology , Spinal Cord/cytology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
12.
J Neurosci ; 28(42): 10599-603, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18923036

ABSTRACT

Stargazer mice are characterized by ataxia and seizures, which resemble the human disorder absence epilepsy. Stargazin, the protein mutated in stargazer mice, promotes the expression and function of neuronal AMPA receptors (AMPARs). However, it is unclear how decreased expression of excitatory AMPARs generates stargazer seizures, given that seizures often result from increased neuronal excitability. Additionally, although stargazer ataxia has been attributed to loss of AMPARs from cerebellar granule cells, other cerebellar neurons have not been examined. To examine the role of AMPAR dysfunction in these behavioral phenotypes, electrophysiological recordings were used to probe AMPAR regulation in relevant brain regions. We found that both cerebellar Purkinje cells and inhibitory thalamic reticular nucleus neurons have strongly reduced synaptic AMPAR function in stargazer mice. Together, our data suggest that impaired AMPAR regulation in multiple neuron populations may contribute to the behavioral phenotypes of absence seizures and ataxia seen in stargazer mice and imply that an understanding of human genetic disorders will require knowledge of both the genes that are mutated as well as their precise cellular expression pattern.


Subject(s)
Ataxia/metabolism , Calcium Channels/biosynthesis , Epilepsy/metabolism , Neural Inhibition/physiology , Neurons/metabolism , Receptors, AMPA/deficiency , Receptors, AMPA/physiology , Animals , Ataxia/genetics , Calcium Channels/deficiency , Calcium Channels/genetics , Epilepsy/genetics , Excitatory Postsynaptic Potentials/physiology , Mice , Mice, Knockout , Mice, Neurologic Mutants , Receptors, AMPA/genetics
13.
J Neurosci ; 28(35): 8740-6, 2008 Aug 27.
Article in English | MEDLINE | ID: mdl-18753375

ABSTRACT

Transmembrane AMPA receptor regulatory proteins (TARPs) are AMPA receptor auxiliary subunits that influence diverse aspects of receptor function. However, the full complement of physiological roles for TARPs in vivo remains poorly understood. Here we find that double knock-out mice lacking TARPs gamma-2 and gamma-3 are profoundly ataxic and fail to thrive. We demonstrate that these TARPs are critical for the synaptic targeting and kinetics of AMPA receptors in cerebellar Golgi cells, but that either alone is sufficient to fully preserve function. By analyzing the few remaining synaptic AMPA receptors in the gamma-2, gamma-3 double knock-out mice, we unexpectedly find that these TARPs specify AMPA receptor subunit composition. This study establishes a new role for TARPs in regulating AMPA receptor assembly and suggests that TARPs are necessary for proper AMPA receptor localization and function in most, if not all, neurons of the CNS.


Subject(s)
Nuclear Proteins/physiology , Receptors, AMPA/physiology , Animals , Animals, Newborn , Cerebellum/cytology , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , Gene Expression Regulation/genetics , Hippocampus/cytology , In Vitro Techniques , Mice , Mice, Knockout , Neurons/physiology , Nuclear Proteins/deficiency , Patch-Clamp Techniques/methods , Receptors, AMPA/classification
14.
Science ; 318(5851): 815-7, 2007 Nov 02.
Article in English | MEDLINE | ID: mdl-17975069

ABSTRACT

Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial agonist. CNQX induced small depolarizing currents in neurons of the central nervous system, and reconstitution of this agonist activity required coexpression of TARPs. A crystal structure of CNQX bound to the TARP-less AMPA receptor ligand-binding domain showed that, although CNQX induces partial domain closure, this movement is not transduced into linker separation, suggesting that TARPs may increase agonist efficacy by strengthening the coupling between domain closure and channel opening. Our results demonstrate that the presence of an auxiliary subunit can determine whether a compound functions as an agonist or antagonist.


Subject(s)
6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Drug Partial Agonism , Protein Subunits/physiology , Receptors, AMPA/agonists , Receptors, AMPA/antagonists & inhibitors , 6-Cyano-7-nitroquinoxaline-2,3-dione/chemistry , Animals , Benzodiazepines/pharmacology , Binding, Competitive , Cell Line , Cerebellum/cytology , Crystallography, X-Ray , Hippocampus/cytology , Humans , In Vitro Techniques , Interneurons/drug effects , Mice , Models, Molecular , Patch-Clamp Techniques , Protein Conformation , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Quinoxalines/pharmacology , Structure-Activity Relationship , Synaptic Transmission/drug effects , Trichlormethiazide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...