Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 23(20): 6227-6238, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28637688

ABSTRACT

Purpose: Myxoid liposarcoma is an aggressive disease with particular propensity to develop hematogenic metastases. Over 90% of myxoid liposarcoma are characterized by a reciprocal t(12;16)(q13;p11) translocation. The resulting chimeric FUS-DDIT3 fusion protein plays a crucial role in myxoid liposarcoma pathogenesis; however, its specific impact on oncogenic signaling pathways remains to be substantiated. We here investigate the functional role of FUS-DDIT3 in IGF-IR/PI3K/Akt signaling driving myxoid liposarcoma pathogenesis.Experimental Design: Immunohistochemical evaluation of key effectors of the IGF-IR/PI3K/Akt signaling axis was performed in a comprehensive cohort of myxoid liposarcoma specimens. FUS-DDIT3 dependency and biological function of the IGF-IR/PI3K/Akt signaling cascade were analyzed using a HT1080 fibrosarcoma-based myxoid liposarcoma tumor model and multiple tumor-derived myxoid liposarcoma cell lines. An established myxoid liposarcoma avian chorioallantoic membrane model was used for in vivo confirmation of the preclinical in vitro results.Results: A comprehensive subset of myxoid liposarcoma specimens showed elevated expression and phosphorylation levels of various IGF-IR/PI3K/Akt signaling effectors. In HT1080 fibrosarcoma cells, overexpression of FUS-DDIT3 induced aberrant IGF-IR/PI3K/Akt pathway activity, which was dependent on transcriptional induction of the IGF2 gene. Conversely, RNAi-mediated FUS-DDIT3 knockdown in myxoid liposarcoma cells led to an inactivation of IGF-IR/PI3K/Akt signaling associated with diminished IGF2 mRNA expression. Treatment of myxoid liposarcoma cell lines with several IGF-IR inhibitors resulted in significant growth inhibition in vitro and in vivoConclusions: Our preclinical study substantiates the fundamental role of the IGF-IR/PI3K/Akt signaling pathway in myxoid liposarcoma pathogenesis and provides a mechanism-based rationale for molecular- targeted approaches in myxoid liposarcoma cancer therapy. Clin Cancer Res; 23(20); 6227-38. ©2017 AACR.


Subject(s)
Liposarcoma, Myxoid/metabolism , Oncogene Proteins, Fusion/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , Adult , Aged , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Female , Gene Expression , Gene Knockdown Techniques , Humans , Liposarcoma, Myxoid/drug therapy , Liposarcoma, Myxoid/pathology , Male , Mice , Middle Aged , Molecular Targeted Therapy , Oncogene Proteins, Fusion/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/genetics , Signal Transduction/drug effects , Tumor Burden , Xenograft Model Antitumor Assays , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...