Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(1): e4081, 2009.
Article in English | MEDLINE | ID: mdl-19119323

ABSTRACT

BACKGROUND: Integrase (IN) of the type 1 human immunodeficiency virus (HIV-1) catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186) in the crystal structure of the catalytic core (CC) of the IN-Phe185Lys variant that consists of the alpha(4) and alpha(5) helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. PRINCIPAL FINDINGS: We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4) and alpha(5) helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat) ends of virus DNA with a K(d) (dissociation constant) in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD) but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor) lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix), it is the N terminal helix (alpha(4)) which has the role of DNA recognition helix, while the C terminal helix (alpha(5)) would rather contribute to the motif stabilization by interactions with the alpha(4) helix. CONCLUSION: The motif, termed HTHi (i, for inverted) emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.


Subject(s)
DNA, Viral/metabolism , HIV Integrase/chemistry , HIV Integrase/metabolism , HIV-1/enzymology , Helix-Turn-Helix Motifs , Intercellular Signaling Peptides and Proteins/metabolism , Amino Acid Sequence , HIV Integrase/genetics , Humans , Models, Molecular , Molecular Sequence Data , Oligonucleotides/chemistry , Oligonucleotides/genetics , Oligonucleotides/metabolism , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
2.
Biochim Biophys Acta ; 1699(1-2): 77-86, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15158714

ABSTRACT

The peptide denoted K159 (30 residues) derives from the catalytic core (CC) sequence of HIV-1 integrase (IN, residues 147-175). In the crystal structure of CC, the corresponding segment belongs to the alpha4 helix (residues 148-168, including residues Glu 152, Lys 156 and Lys 159, crucial for enzyme activity and DNA recognition), a loop (residues 169-171) and a part of the alpha5 helix (171-175), involved in enzyme dimerization. We used the fluorescence and the circular dichroism (CD) properties in the near-UV of the aromatic side chain of a tyrosine residue added at the C-terminal end of K159 in order to analyze the behavior of the concentrated and diluted peptide in aqueous trifluoroethanol (TFE), in an attempt to connect the information obtainable at high (NMR), medium (CD) and low (fluorescence) concentrations of the peptide. Altogether, the C-terminal tyrosine residue provided indirect information on the global conformation of K159 and on the local orientation and environment of the residue. The propensity of TFE to stabilize alpha-helical conformations in peptides was confirmed in CD and fluorescence experiments at relatively high (20-160 microM) and low (2-16 microM) concentrations, respectively. At relatively high concentration, stabilization of the peptide into alpha-helical conformation favored its auto-association likely in parallel coiled-coil dimers, as pointed out in our previous work [Eur. J. Biochem. 253 (1998) 236]. This was further confirmed by ANS (1-anilinonaphtalene-8-sulfonic acid) analysis and fluorescence temperature coefficient measurement. With diluted K159, a Stern-Volmer analysis with positively and negatively charged quenchers indicated that, when the intermolecular interactions were absent, the tyrosine was in a positively charged environment, as if the peptide folded into a U-shaped conformation similar to that present in the crystal structure of the enzyme.


Subject(s)
Catalytic Domain , Peptide Fragments/chemistry , Protein Conformation , Tyrosine/chemistry , Circular Dichroism , HIV Integrase/chemistry , Humans , Magnetic Resonance Spectroscopy , Peptide Fragments/drug effects , Spectrometry, Fluorescence , Trifluoroethanol/pharmacology
3.
J Biol Chem ; 278(22): 19966-73, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12626494

ABSTRACT

The last decade has contributed to our understanding of the three-dimensional structure of the human immunodeficiency virus, type 1 (HIV-1) integrase (IN) and to the description of how the enzyme catalyzes the viral DNA integration into the host DNA. Recognition of the viral DNA termini by IN is sequence-specific, and that of the host DNA does not require particular sequence, although in physicochemical studies IN fails to discriminate between the two interactions. Here, such discrimination was allowed thanks to a model system using designed oligonucleotides and peptides as binding structures. Spectroscopic (circular dichroism, NMR, and fluorescence anisotropy) techniques and biochemical (enzymatic and filter binding) assays clearly indicated that the amphipathic helix alpha4, located at the catalytic domain surface, is responsible for the specific high affinity binding of the enzyme to viral DNA. Analogues of the alpha4 peptide having increased helicity and still bearing the biologically relevant lysines 156 and 159 on the DNA binding face, and oligonucleotides conserving an intact attachment site, are required to achieve high affinity complexes (Kd of 1.5 nm). Data corroborate previous in vivo results obtained with mutated viruses.


Subject(s)
DNA, Viral/metabolism , HIV Integrase/metabolism , HIV-1/enzymology , Amino Acid Sequence , Base Sequence , DNA Primers , Fluorescence Polarization , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...