Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anticancer Agents Med Chem ; 22(1): 160-168, 2022.
Article in English | MEDLINE | ID: mdl-33719963

ABSTRACT

BACKGROUND AND OBJECTIVE: Chrysin and its derivatives proved to possess potential anti-tumour activity. MATERIALS AND METHODS: A new series of chrysin analogs containing 1,2,3-triazoles with different substituent groups (5a-5l) was designed, synthesized, and evaluated as potential anticancer agents. The synthesized compounds were characterized using FT-IR, 1H NMR 13C NMR spectroscopy and mass spectrometry. RESULTS: The anticancer activities of the synthesized compounds were studied in four cancer cell lines viz. PC3, PC3-PSMA, MCF-7 and UM-UC-3 using doxorubicin as standard. Among all the tested compounds, 5c was found as most active with IC50 value of 10.8 ± 0.04 µM in PC3 cells and 20.53 ± 0.21 µMin MCF-7 cells, respectively. Flow cytometry analyses indicated that synthesized compounds 5a, 5c, and 5h arrested MCF-7 cells at the G2/M phase in a dose-dependent manner. CONCLUSION: Chyrsin derivatives could be novel anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Flavonoids/pharmacology , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flavonoids/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
2.
J Control Release ; 286: 210-223, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29964136

ABSTRACT

Effective transgene expression in mammalian cells relies on successful delivery, cytoplasmic trafficking, and nuclear translocation of the delivered vector, but delivery is impeded by several formidable physicochemical barriers on the surface of and within the target cell. Although methods to overcome cellular exclusion and endosomal entrapment have been studied extensively, strategies to overcome inefficient nuclear entry and subsequent intranuclear barriers to effective transient gene expression have only been sparsely explored. In particular, the role of nuclear packaging of DNA with histone proteins, which governs endogenous gene expression, has not been extensively elucidated in the case of exogenously delivered plasmids. In this work, a parallel screen of small molecule inhibitors of chromatin-modifying enzymes resulted in the identification of class I/II HDACs, sirtuins, LSD1, HATs, and the methyltransferases EZH2 and MLL as targets whose inhibition led to the enhancement of transgene expression following polymer-mediated delivery of plasmid DNA. Quantitative PCR studies revealed that HDAC inhibition enhances the amount of plasmid DNA delivered to the nucleus in UMUC3 human bladder cancer cells. Native chromatin immunoprecipitation (N-ChIP)-qPCR experiments in CHO-K1 cells indicated that plasmids indeed interact with intracellular core Histone H3, and inhibitors of HDAC and LSD1 proteins are able to modulate this interaction. Pair-wise treatments of effective inhibitors led to synergistic enhancement of transgene expression to varying extents in both cell types. Our results demonstrate that the ability to modulate enzymes that play a role in epigenetic processes can enhance the efficacy of non-viral gene delivery, resulting in significant implications for gene therapy and industrial biotechnology.


Subject(s)
DNA/genetics , Gene Expression/drug effects , Gene Transfer Techniques , Histone Deacetylase Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Plasmids/genetics , Transgenes , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Genetic Therapy , Histones/metabolism , Humans , Neoplasms/therapy , Transgenes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...