Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 1-6, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836689

ABSTRACT

This study aimed to investigate the antibacterial and antimicrobial activity of ozone gel against oral biofilms grown on titanium dental implant discs. The experiment used medical grade five titanium discs on which peri-implant isolated biofilms were grown. The experimental groups were control, Streptococcus mutans (S. mutans) and Granulicatella adiacens (G. adiacens), (n = 6). The oral microbes grown on titanium discs were exposed to ozone gel for 3 minutes and the antibacterial activity was assessed by turbidity test and adherence test for the antibiofilm activity test. Bacterial morphology and confluence were investigated by scanning electron microscopy (SEM), (n=3). Two bacterial species were identified from the peri-implant sample, S. mutans and G. adiacens. The results showed that adding ozone to the bacterial biofilm on titanium dental implants did not exhibit significant antibacterial activity against S. mutans. Moreover, there was no significant difference in antibiofilm activity between control and treatment groups. However, significant antibacterial and antibiofilm effect was exhibited by ozone gel against G. adiacens. Ozonated olive oil can be considered as a potential antimicrobial agent for disinfecting dental implant surfaces and treating peri-implantitis.


Subject(s)
Biofilms , Dental Implants , Olive Oil , Ozone , Peri-Implantitis , Streptococcus mutans , Ozone/pharmacology , Olive Oil/pharmacology , Olive Oil/chemistry , Biofilms/drug effects , Biofilms/growth & development , Peri-Implantitis/microbiology , Peri-Implantitis/drug therapy , Streptococcus mutans/drug effects , Streptococcus mutans/physiology , Humans , Dental Implants/microbiology , Titanium/pharmacology , Titanium/chemistry , Anti-Bacterial Agents/pharmacology , Microscopy, Electron, Scanning , Microbial Sensitivity Tests
2.
Antibiotics (Basel) ; 12(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37508193

ABSTRACT

(1) Background: The aim of this research was to investigate the antibacterial activity of dissolved silver from silver-coated titanium implants against Streptococcus mutans. (2) Methodology: Silver-coated titanium implant discs were immersed in 1.8 mL of brain heart infusion broth (BHIB) and incubated for 24 h in order to release the silver ions into the broth. The coating quality was confirmed via EDS, and the dissolved silver was measured via inductively coupled plasma mass spectrometry (ICP-MS). The experimental design used unconditioned broth (control) and broth conditioned with silver released from silver-coated titanium implants (n = 6). Regarding the antibacterial activity, isolated Streptococcus mutans was used. A turbidity test and lactate production test were performed to determine the effect of dissolved silver on bacterial growth in a suspension and biofilm formation. (3) Result: The results showed that the coating was successfully applied on the substrate. There was around 0.3 mg/L of silver released into the BHIB, and the turbidity of the control group was significantly higher than the treatment, with measured absorbance values of 1.4 and 0.8, respectively, indicating that the dissolved silver ions from the silver-coated titanium discs exhibited some degree of antibacterial activity by preventing the growth of Streptococcus mutans. However, the results of the antibiofilm activity test did not show any significant difference between the groups. (4) Conclusion: The dissolved silver from silver-coated titanium implants has an antibacterial activity but not a significant antimicrobial activity, indicating that the dissolved silver from silver-coated titanium abutments can significantly reduce the incidence of peri-implant mucositis.

3.
J Biomed Mater Res B Appl Biomater ; 106(3): 1038-1051, 2018 04.
Article in English | MEDLINE | ID: mdl-29524329

ABSTRACT

Patients with facial prostheses suffer from yeast, Candida albicans, infections. This study aimed to determine the biocompatibility and antifungal properties of silicone facial prostheses coated with silver nanoparticles (Ag NPs) in vitro. Medical grade silicone discs were coated with 5 and 50 mg L-1 dispersions of either Ag NPs or AgNO3 . Coatings were fully characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy. The biocompatibility was examined using human dermal fibroblasts (Hs68), whereas antifungal efficacy was tested against C. albicans (NCPF-3179). The fibroblast viability was assessed by measuring lactate dehydrogenase (LDH) activity, protein content and tissue electrolytes. There were no effects on the LDH activity of fibroblast cell homogenates, and leak of LDH activity into external media remained low (0.1-0.2 IU mL-1 ). Sublethal effects of Ag NP coatings on membrane permeability/ion balance was not observed, as measured by stable homogenate Na+ and K+ concentrations. Some Ag (13 mg L-1 ) was detected from the AgNO3 coatings in the media, but total Ag remained below detection limit (<1.2 µg L-1 ) for the Ag NP coatings; indicating the latter were stable. When fibroblasts grown on silver coatings were challenged with C. albicans, the Ag NP coating was effective at preventing fungal growth as measured by ethanol production by the yeast, and without damaging the fibroblasts. Ethanol production decreased from 43.2 ± 25.02 in controls to 3.6 µmol mL-1 in all the silver treatments. Data shows that silicone prosthetic materials coated with Ag NPs are biocompatible with fibroblast cells in vitro and show antifungal properties. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1038-1051, 2018.


Subject(s)
Antifungal Agents/pharmacology , Coated Materials, Biocompatible , Maxillofacial Prosthesis , Metal Nanoparticles , Silicones/chemistry , Silver/pharmacology , Antifungal Agents/chemistry , Candida albicans/drug effects , Candida albicans/metabolism , Cell Line , Cell Membrane Permeability , Ethanol/metabolism , Fibroblasts , Humans , L-Lactate Dehydrogenase/analysis , Materials Testing , Silver Nitrate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...