Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 200: 106835, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38908413

ABSTRACT

Lamivudine (LMD), an enantiomer of 2'-deoxy-3'-thiacytidine, plays a crucial role in combatting HIV-1 and managing hepatitis B virus infections. Despite its effectiveness, challenges arise from its difficult flowability and tendency to agglomerate during storage, necessitating a granulation step before tablet compression, as direct compression has proven ineffective. This study aimed to optimize Lamivudine spherical agglomerates using response surface methodology, delving into the intricate relationship between design factors (concentration of tween, span, and acetone) and experimental outcomes (yield and particle size) through central composite design. Analysis of variance (ANOVA) was employed for optimization, with the Quasi-emulsion solvent-diffusion (QESD) crystallization technique utilized for the checkpoint batch. This technique, involving a single solvent and antisolvent with surfactants, showcased remarkable enhancements in flowability and reduced storage agglomeration. The impact of various surfactants [Hydroxy Propyl Methyl Cellulose (HPMC), polysorbate 80, and sorbitane monooleate] on particle morphology, flowability, and storage agglomeration during crystallization was thoroughly assessed. While achieving direct compression into tablets, the porous structure of LMD agglomerates presented challenges in tablet press production speeds, prompting adjustments such as reducing punch speed or implementing a precompression step. Positive outcomes were realized for disintegration and in vitro drug release in comparison to direct compression and wet granulation methods. In conclusion, the QESD crystallization technique successfully yielded hollow, spherical LMD agglomerates with enhanced properties, representing a significant milestone in pharmaceutical formulation.


Subject(s)
Crystallization , Emulsions , Lamivudine , Particle Size , Solvents , Surface-Active Agents , Tablets , Lamivudine/chemistry , Tablets/chemistry , Surface-Active Agents/chemistry , Emulsions/chemistry , Solvents/chemistry , Diffusion , Drug Compounding/methods , Polysorbates/chemistry , Anti-HIV Agents/chemistry , Hypromellose Derivatives/chemistry , Hexoses
2.
Molecules ; 27(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432014

ABSTRACT

A brand-new nano-crystal (NC) version of the hydrophobic drug Paclitaxel (PT) were formulated for cancer treatment. A stable NC formulation for the administration of PT was created using the triblock co-polymer Pluronic F127. To achieve maximum entrapment effectiveness and minimal particle size, the formulation was improved using the central composite design by considering agitation speed and vacuum pressure at five levels (coded as +1.414, +1, 0, -1, and -1.414). According to the Design Expert software's predictions, 13 runs were created and evaluated for the chosen responses. The formulation prepared with an agitation speed of 1260 RPM and a vacuum pressure of 77.53 mbar can meet the requirements of the ideal formulation in order to achieve 142.56 nm of PS and 75.18% EE, according to the level of desirability (D = 0.959). Folic acid was conjugated to Pluronic F127 to create folate receptor-targeted NC. The drug release profile of the nano-crystals in vitro demonstrated sustained release over an extended period. Folate receptor (FR)-targeted NC (O-PT-NC-Folate) has also been prepared by conjugating folic acid to Pluronic F127. MTT test is used to validate the targeting efficacy on the FR-positive human oral cancer cell line (KB). At pharmacologically relevant concentrations, the PT nano-crystal formulation did not cause hemolysis. Compared to non-targeted NC of PT, the O-PT-NC-Folate showed a comparable but more sustained anti-cancer effect, according to an in vivo anti-tumor investigation in NCI/ADR-RES cell lines. The remarkable anti-tumor effectiveness, minimal toxicity, and simplicity of scale-up manufacturing of the NC formulations indicate their potential for clinical development. Other hydrophobic medications that are formulated into nano-systems for improved therapy may benefit from the formulation approach.


Subject(s)
Neoplasms , Poloxamer , Humans , Poloxamer/chemistry , Paclitaxel/pharmacology , Folic Acid/chemistry , Drug Liberation
3.
Drug Deliv ; 29(1): 3370-3383, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36404771

ABSTRACT

Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.


Subject(s)
Diabetes Mellitus , Malva , Nanofibers , Nanofibers/chemistry , Neomycin , Wound Healing , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Molecules ; 27(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889209

ABSTRACT

Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.


Subject(s)
Diabetes Mellitus, Experimental , Metal Nanoparticles , Psidium , Animals , Rats , Blood Glucose , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Lipids , Plant Extracts/pharmacology , Plant Leaves , Silver
5.
J Clin Med ; 11(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683526

ABSTRACT

For a few decades, globally, erectile dysfunction (ED) has become more prominent even in young adults and represents a mounting health concern causing a significant effect on men's quality of life. There is an expectation that by the end of 2025, the number of ED cases can rise to 322 million. We aimed to comprehensively analyze the scientific output of scholarly articles and studies in the field of ED (2016-2021). Data from scholarly articles were collected using Pubmed, and clinical trials-related information was accessed from the clinical trials website. An extensive patent search was conducted using databases such as USPTO (United States patent and trademark office) and EPO (European patent office), WIPO (World Intellectual Property Organization), etc. Owing to the high market value of ED drugs, considerable interest was attained to grab the opportunities. The race to replace the phosphodiesterase type 5 inhibitor (PDE5 inhibitor-PDE5i) can be identified as evident from the significant number of patents filed and the inventions cleared with clinical trials. Some other intriguing interventions are identified for ED treatment but have yet to gain public acceptance. The current analysis confirms the overall evolution and unexplored corners of research on ED treatment strategies with a current global projection.

6.
Pharmaceutics ; 14(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335960

ABSTRACT

The purpose of the present research work was to design, optimize, and evaluate fluvastatin-loaded solid lipid nanoparticles (FLV-SLNPs) using 32 factorial design for enhancing the bioavailability. Fluvastatin has several disadvantages, including the low solubility and substantial first-pass metabolism resulting in a low (30%) bioavailability and a short elimination half-life. FLV-SLNPs were prepared using the nano-emulsion technique. For the optimization of the FLV-SLNPs, a total of nine formulations were prepared by varying two independent factors at three levels, using full factorial design. In this design, lipid (A) and surfactant (B) concentrations were chosen as independent factors, whereas entrapment efficiency (Y1) and in-vitro drug release (Y2) were selected as the dependent variables. Additionally, the prepared SLNPs were characterized for X-ray diffraction, Fourier transform-infrared spectroscopy, and differential scanning calorimetry. These studies revealed that there were no interactions between the drug and the selected excipients and the selected formulation components are compatible with the drug. Pharmacokinetic studies in rats confirmed significant improvement in AUC and MRT of SLNPs in comparison with the pure drug indicating the enhanced bioavailability of SLNPs. This study provides a proof-of-concept for the fact that SLNPs can be effectively developed via experimental factorial design, which requires relatively minimal experimentation.

7.
Materials (Basel) ; 15(6)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35329759

ABSTRACT

The present investigation demonstrates renewable cardanol-based polyol for the formulation of nanocomposite polyurethane (PU) coatings. The functional and structural features of cardanol polyol and nanoparticles were studied using FT-IR and 1H NMR spectroscopic techniques. The magnetic hydroxyapatite nanoparticles (MHAPs) were dispersed 1-5% in PU formulations to develop nanocomposite anticorrosive coatings. An increase in the strength of MHAP increased the anticorrosive performance as examined by immersion and electrochemical methods. The nanocomposite PU coatings showed good coating properties, viz., gloss, pencil hardness, flexibility, cross-cut adhesion, and chemical resistance. Additionally, the coatings were also studied for surface morphology, wetting, and thermal properties by scanning electron microscope (SEM), contact angle, and thermogravimetric analysis (TGA), respectively. The hydrophobic nature of PU coatings increased by the addition of MHAP, and an optimum result (105°) was observed in 3% loading. The developed coatings revealed its hydrophobic nature with excellent anticorrosive performance.

8.
J Cosmet Dermatol ; 21(8): 3555-3560, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34919337

ABSTRACT

BACKGROUND: Standardization of topical therapy dosage is important to ensure optimum use and dosage of topical medications. One of the concepts frequently used in the standardization of topical treatment is the Finger-tip unit (FTU). While practitioners, both dermatologists and pharmacists, are generally aware of FTU, practical use is less. OBJECTIVES: We aimed to evaluate views and practices related to FTU among both dermatology and pharmacy faculty and to elicit and validate suggestions for improving standardization. METHODS: We surveyed a group of Dermatologists and Pharmacists-in two phases-in phase 1 (n = 44), an electronic survey was used as a tool to understand their practices regarding FTU, and to obtain suggestions regarding standardization of topical medication delivery. In phase 2 (n = 40), the main suggestions for improvement were resent to the group to rate and validate the same. RESULTS: The awareness of FTU was high among the experts, but practical use of the FTU for patient counselling was less frequent. The group gave suggestions to standardize applications. All these suggestions got high ratings on both feasibility and possible effectiveness in the second phase, with the highest rating being for the suggestion of "Placing QR codes on ointment/cream tubes which link to websites with educational materials/ videos on FTU/topical drug dosing." CONCLUSION: Awareness regarding FTU is high among both dermatologists and pharmacists, however practical use is less. Strategies to improve standardization of topical drug dosing can be formulated through collaboration involving both dermatologists and pharmacists.


Subject(s)
Dermatologists , Pharmacists , Attitude , Cross-Sectional Studies , Humans , Pharmaceutical Preparations , Reference Standards
9.
Biomed Res Int ; 2019: 2161348, 2019.
Article in English | MEDLINE | ID: mdl-30800663

ABSTRACT

We tested the solubility and dissolution of tamoxifen citrate to ascertain the optimal conditions for faster dissolution. Using the solvent evaporation method and hydrophilic carriers, we formulated tamoxifen citrate (TC) that contained solid dispersions (SDs). We increased the solubility and dissolution rate of TC with a solid dispersion system that consisted of polyethylene glycol (PEG-6000), beta-cyclodextrin (ß-CD), and a combination of carriers. Physicochemical characteristics of solubility (mg/ml) were found to be 0.987±0.04 (water), 1.324±0.05 (6.8pH PBS), and 1.156±0.03 (7.4 pH PBS) for F5 formulation, percentage yield was between 98.74 ± 1.11% and 99.06 ± 0.58%, drug content was between 98.06±0.58 and 99.06±1.10, and dissolution studies binary complex showed a faster release of TC as compared to a single polymer and pure drug. Furthermore, thermal properties, physicochemical drug and polymer interaction, crystal properties, and morphology were determined using differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), X-ray differential studies, and scanning electron microscopy. We used the same proportion of carrier concentrations of the formulations to calculate the solubility of TC. Our results demonstrated that increased concentrations of ß-C yielded an improved solubility of TC, which was two times higher than pure TC. The uniformity in drug content was 97.99 %. A quicker drug release occurred from the binary complex formulation as seen in the dissolution profile. FTIR demonstrated an absence in the physicochemical interaction between the drug and carriers. The drug was also found to be dispersed in the amorphous state as revealed by DSC and XRD. The drug concentration did not vary during various storage conditions. Our in vivo studies demonstrated that SD displayed significantly higher values of Cmax (p < 0.05) and AUC0-24 (p < 0.05) as compared to free TC. Furthermore, Tmax in SD was significantly lower (p < 0.05), as compared to free TC.


Subject(s)
Solubility/drug effects , Tamoxifen/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Hydrophobic and Hydrophilic Interactions/drug effects , Microscopy, Electron, Scanning/methods , Polyethylene Glycols/chemistry , Polymers/chemistry , Solvents/chemistry , Spectrophotometry, Infrared/methods , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods , beta-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...