Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Eur J Immunol ; : e2350716, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837757

ABSTRACT

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.

2.
Front Oncol ; 14: 1341766, 2024.
Article in English | MEDLINE | ID: mdl-38571493

ABSTRACT

Introduction: Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4BG13D and its membrane transporter (PDE6δ). Methods: The antitumor potential of C14 and P8 was assessed using TNBC cell lines, MDA-MB-231, and the radioresistant derivative MDA-MB-231RR, both carrying the K-Ras4B> G13D mutation. We investigated the compounds' effects on K-Ras signaling pathways, cell viability, and tumor growth in vivo. Results: Western blotting analysis determined the negative impact of C14 and P8 on the activation of mutant K-Ras signaling pathways in MDA-MB-231 and MDA-MB-231RR cells. Proliferation assays demonstrated their efficacy as cytotoxic agents against K-RasG13D mutant cancer cells and in inducing apoptosis. Clonogenic assays proven their ability to inhibit TNBC and radioresistant TNBC cell clonogenicity. In In vivo studies, C14 and P8 inhibited tumor growth and reduced proliferation, angiogenesis, and cell cycle progression markers. Discussion: These findings suggest that C14 and P8 could serve as promising adjuvant treatments for TNBC, particularly for non-responders to standard therapies. By targeting overactivated K-Ras and its membrane transporter, these compounds offer potential therapeutic benefits against TNBC, including its radioresistant form. Further research and clinical trials are warranted to validate their efficacy and safety as novel TNBC treatments.

3.
iScience ; 26(12): 108294, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38034354

ABSTRACT

Dengue virus (DENV) uses cellular nuclear transport machinery to import some proteins into the nucleus. Recently, the non-structural protein 3 (NS3) of DENV was localized in the nucleus of infected cells; however, its nuclear import mechanism is still unknown. In this study, we demonstrate that Ivermectin (IVM) inhibits the nuclear localization of NS3 through the inhibition of the Importin α/ß1 pathway. We also report that Atorvastatin (ATV) can modulate the nuclear transport of NS3 protease and NS5 polymerase of DENV-2. On the other hand, we found that IVM and ATV treatments reduce the alteration of nuclear pore complex (NPC) proteins, and an IVM+ATV combination reduced DENV infection both in vitro and in vivo. Hence, we conclude that ATV transport inhibition is an additional antiviral effect of this drug, suggesting a potential anti-DENV therapy in combination with IVM.

4.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37813486

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among all human cancers as it is highly resistant to chemotherapy. K-Ras mutations usually trigger the development and progression of PDAC. We hypothesized that compounds stabilizing the KRas4B/PDE6δ complex could serve as PDAC treatments. Using in silico approaches, we identified the small molecules C14 and P8 that reduced K-Ras activation in primary PDAC cells. Importantly, C14 and P8 significantly prevented tumor growth in patient-derived xenotransplants. Combined treatment with C14 and P8 strongly increased cytotoxicity in PDAC cell lines and primary cultures and showed strong synergistic antineoplastic effects in preclinical murine PDAC models that were superior to conventional therapeutics without causing side effects. Mechanistically, C14 and P8 reduced tumor growth by inhibiting AKT and ERK signaling downstream of K-RAS leading to apoptosis, specifically in PDAC cells. Thus, combined treatment with C14 and P8 may be a superior pharmaceutical strategy to improve the outcome of PDAC.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Antineoplastic Agents/pharmacology , Pancreatic Neoplasms
5.
Viruses ; 15(7)2023 06 28.
Article in English | MEDLINE | ID: mdl-37515153

ABSTRACT

Flaviviruses, including Dengue (DENV), Zika (ZIKV), and Yellow Fever (YFV) viruses, represent a significant global health burden. The development of effective antiviral therapies against these viruses is crucial to mitigate their impact. This study investigated the antiviral potential of the cholesterol-lowering drugs atorvastatin and ezetimibe in monotherapy and combination against DENV, ZIKV, and YFV. In vitro results demonstrated a dose-dependent reduction in the percentage of infected cells for both drugs. The combination of atorvastatin and ezetimibe showed a synergistic effect against DENV 2, an additive effect against DENV 4 and ZIKV, and an antagonistic effect against YFV. In AG129 mice infected with DENV 2, monotherapy with atorvastatin or ezetimibe significantly reduced clinical signs and increased survival. However, the combination of both drugs did not significantly affect survival. This study provides valuable insights into the potential of atorvastatin and ezetimibe as antiviral agents against flaviviruses and highlights the need for further investigations into their combined therapeutic effects.


Subject(s)
Dengue Virus , Dengue , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Atorvastatin , Drug Repositioning , Ezetimibe , Cholesterol
6.
Int J Mol Sci ; 23(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35806015

ABSTRACT

The PDZ (PSD95, Dlg and ZO-1) genes encode proteins that primarily function as scaffolds of diverse signaling pathways. To date, 153 PDZ genes have been identified in the human genome, most of which have multiple protein isoforms widely studied in epithelial and neural cells. However, their expression and function in immune cells have been poorly studied. Herein, we aimed to assess the transcriptional profiles of 83 PDZ genes in human macrophages (Mɸ) and dendritic cells (DCs) and changes in their relative expression during cell PRR stimulation. Significantly distinct PDZ gene transcriptional profiles were identified under different stimulation conditions. Furthermore, a distinct PDZ gene transcriptional signature was found in Mɸ and DCs under the same phagocytic stimuli. Notably, more than 40 PDZ genes had significant changes in expression, with potentially relevant functions in antigen-presenting cells (APCs). Given that several PDZ proteins are targeted by viral products, our results support that many of these proteins might be viral targets in APCs as part of evasion mechanisms. Our results suggest a distinct requirement for PDZ scaffolds in Mɸ and DCs signaling pathways activation. More assessments on the functions of PDZ proteins in APCs and their role in immune evasion mechanisms are needed.


Subject(s)
Immune Evasion , Macrophages , Dendritic Cells , Humans , Macrophages/metabolism , Signal Transduction
7.
Future Med Chem ; 14(11): 771-784, 2022 06.
Article in English | MEDLINE | ID: mdl-35537140

ABSTRACT

Background: Imidazo[1,2-a]azines with an acid group decrease inflammatory processes in murine models, and the effect has been attributed to the inhibition of COX enzymes. Results: The optimization of a series of imidazo[1,2-a]azines was performed using the reduced factorial design 23-1. The inhibitory effects of five acid derivatives of imidazo[1,2-a]azines and the standard drugs ibuprofen and indomethacin were evaluated in vitro on COX isoforms. It was observed that the different substituents provided different inhibition profiles, highlighting that the imidazo[1,2-a]pyridines are more active than the bioisosteric imidazo[1,2-a]pyrimidines. These results were analyzed using in silico docking to recognize the structural elements necessary for the inhibition of the targets. The IC50 values for COX1 and COX2 for the various compounds were as follows. COX1: 4a = 2.72 µM, 4b = 3.94 µM, 5a = 7.29µM, 5b = 63.26 µM, 6a = 12.93 µM, indomethacin = 0.13 µM, ibuprofen = 0.2 µM; COX 2: 4a = 1.89 µM, 4b = 2.39 µM, 5a = 8.08 µM, 5b = 41.15 µM, 6a = 5.86 µM, indomethacin = 0.09 µM, ibuprofen = 0.125 µM. Conclusion: Through factorial design it was possible to optimize the inhibitory response on therapeutic targets, obtaining molecule 4a as a result of factorial analysis.


Subject(s)
Ibuprofen , Pyrimidines , Animals , Cyclooxygenase 2/metabolism , Ibuprofen/pharmacology , Indomethacin , Mice , Molecular Docking Simulation , Protein Isoforms , Pyrimidines/chemistry , Structure-Activity Relationship
8.
Mol Genet Genomic Med ; 10(6): e1938, 2022 06.
Article in English | MEDLINE | ID: mdl-35411714

ABSTRACT

BACKGROUND: Down syndrome (DS) is the most common chromosomal survival aneuploidy. The increase in DS life expectancy further heightens the risk of dementia, principally early-onset Alzheimer's disease (AD). AD risk in DS is higher, considering that this population may also develop metabolic diseases such as obesity, dyslipidemias, and diabetes mellitus. The extra genetic material that characterizes DS causes an imbalance in the genetic dosage, including over-expression of AD's key pathophysiological molecules and the gene expression regulators, the microRNAs (miRNAs). Two miRNAs, chromosome 21-encoded, miR-155, and let-7c, are associated with cognitive impairment and dementia in adults; but, expression dynamics and relationship with clinical variables during the DS's lifespan had remained hitherto unexplored. METHODS: The anthropometric, clinical, biochemical, and profile expression of circulating miR-155 and let-7c were analyzed in a population of 52 control and 50 DS subjects divided into the young group (Aged ≤20 years) and the adult group (Aged ≥21 years). RESULTS: The expression changes for miR-155 were not significant; nevertheless, a negative correlation with HDL-Cholesterol concentrations was observed. Notably, let-7c was over-expressed in DS from young and old ages. CONCLUSION: Overall, our results suggest that let-7c plays a role from the early stages of DS's cognitive impairment while overexpression of miR-155 may be related to lipid metabolism changes. Further studies of both miRNAs will shed light on their potential as therapeutic targets to prevent or delay DS's cognitive impairment.


Subject(s)
Alzheimer Disease , Circulating MicroRNA , Down Syndrome , MicroRNAs , Adult , Alzheimer Disease/genetics , Chromosomes, Human, Pair 21/genetics , Down Syndrome/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
9.
iScience ; 24(5): 102487, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34036249

ABSTRACT

Native Mexican populations are crucial for understanding the genetic ancestry of Aztec descendants and coexisting ethnolinguistic groups in the Valley of Mexico and elucidating the population dynamics of the prehistoric colonization of the Americas. Mesoamerican societies were multicultural in nature and also experienced significant admixture during Spanish colonization of the region. Despite these facts, Native Mexican Y chromosome diversity has been greatly understudied. To further elucidate their genetic history, we conducted a high-resolution Y chromosome analysis with Chichimecas, Nahuas, Otomies, Popolocas, Tepehuas, and Totonacas using 19 Y-short tandem repeat and 21 single nucleotide polymorphism loci. We detected enormous paternal genetic diversity in these groups, with haplogroups Q-MEH2, Q-M3, Q-Z768, Q-L663, Q-Z780, and Q-PV3 being identified. These data affirmed the southward colonization of the Americas via Beringia and connected Native Mexicans with indigenous populations from South-Central Siberia and Canada. They also suggested that multiple population dispersals gave rise to Y chromosome diversity in these populations.

10.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244885

ABSTRACT

Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial-mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as ß-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-ß, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer.


Subject(s)
Adjuvants, Pharmaceutic/therapeutic use , Carcinogenesis/pathology , Colitis/complications , Colonic Neoplasms/drug therapy , Fluorouracil/therapeutic use , Glycine/therapeutic use , Pyrimidines/therapeutic use , STAT6 Transcription Factor/metabolism , Adjuvants, Pharmaceutic/pharmacology , Animals , Apoptosis/drug effects , Cadherins/metabolism , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Colitis/pathology , Colonic Neoplasms/etiology , Colonic Neoplasms/pathology , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Fluorouracil/pharmacology , Glycine/pharmacology , Humans , Inflammation/pathology , Mice, Inbred BALB C , Monocytes/metabolism , Phosphorylation/drug effects , Pyrimidines/pharmacology , beta Catenin/metabolism
11.
R Soc Open Sci ; 7(1): 190775, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32218930

ABSTRACT

Atherothrombosis is the cornerstone of cardiovascular diseases and the primary cause of death worldwide. Genetic contribution to disturbances in lipid metabolism, coagulation, inflammation and oxidative stress increase the susceptibility to its development and progression. Given its multifactorial nature, the multiloci studies have been proposed as potential predictors of susceptibility. A cross-sectional study was conducted to explore the contribution of nine genes involved in oxidative stress, inflammatory and thrombotic processes in 204 subjects with atherothrombosis matched by age and gender with a healthy group (n = 204). To evaluate the possibility of spurious associations owing to the Mexican population genetic heterogeneity as well as its ancestral origins, 300 unrelated mestizo individuals and 329 Native Americans were also included. ALOX5, LPA, MMP9 and TPO gene polymorphisms, as well as their multiallelic combinations, were twice to four times more frequent in those individuals with clinical manifestations of atherothrombosis than in the healthy group. Once adjusting for population stratification was done, these differences remained. Our results add further evidence on the contribution of ALOX5, LPA, MMP9 and TPO polymorphisms to atherothrombosis development in the middle-aged group, emphasizing the multiethnic studies in search of gene risk polymorphisms.

12.
J Alzheimers Dis ; 73(3): 1075-1083, 2020.
Article in English | MEDLINE | ID: mdl-31884479

ABSTRACT

Presenilin 1 gene (PSEN1) mutations are the most common cause of familial Alzheimer's disease (FAD). One of the most abundant FAD mutations, PSEN1 A431E, has been reported to be associated with spastic paraparesis in about half of its carriers, but the determining mechanisms of this phenotype are still unknown. In our study we characterized three A431E mutation carriers, one symptomatic and two asymptomatic, from a Mexican family with a history of spastic paraparesis in all of its affected members. At cognitive assessment and MRI, the symptomatic subject showed an atypical non-amnestic mild cognitive impairment with visuospatial deficits, olfactory dysfunction and significant parieto-occipital brain atrophy. Furthermore, we found several periventricular white matter hyperintensities whose progression pattern and localization correlated with their motor impairment, cognitive profile, and non-motor symptoms. Together, our data suggests that in this family the A431E mutation leads to a divergent neurological disorder in which cognitive deterioration was clinically exceeded by motor impairment and that it involves early glial and vascular pathological changes.


Subject(s)
Brain/diagnostic imaging , Cognitive Dysfunction/genetics , Paraparesis, Spastic/genetics , Presenilin-1/genetics , White Matter/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Female , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Mexico , Middle Aged , Mutation , Neuropsychological Tests , Paraparesis, Spastic/diagnostic imaging , Paraparesis, Spastic/psychology , Pedigree , Phenotype
13.
Mol Neurobiol ; 55(10): 8014-8037, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29498005

ABSTRACT

Neurogenesis plays a significant role during adulthood, and the observation that neural stem cells reside in the central nervous system and the olfactory epithelium has attracted attention due to their importance in neuronal regeneration. In addition, soluble factors (SFs) release by neural stem cells may modulate the neurogenic process. Thus, in this study, we identified the SFs released by olfactory human neural stem/progenitor cells (hNS/PCs-OE). These cells express Ki67, nestin, and ßIII-tubulin, indicating their neural lineage. The hNS/PCs-OE also express PSD95 and tau proteins during proliferation, but increased levels are observed after differentiation. Thus, we evaluated the effects of SFs from hNS/PCs-OE on the viability, proliferation, and differentiation potential of adult murine hippocampal neural precursor cells (AHPCs). SFs from hNS/PCs-OE maintain cells in the precursor and proliferative stages and mainly promote the astrocytic differentiation of AHPCs. These effects involved the activation, as measured by phosphorylation, of several proteins (Erk1/2; Akt/PRAS40/GSK3ß and JAK/STAT) involved in key events of the neurogenic process. Moreover, according to the results from the antibody-based microarray approach, among the soluble factors, hNS/PCs-OE produce interleukin-6 (IL-6) and neurotrophin 4 (NT4). However, residual epidermal growth factor (EGF) was also detected. These proteins partially reproduced the effects of SFs from hNS/PCs-OE on AHPCs, and the mechanism underlying these effects is mediated by Src proteins, which have been implicated in EGF-induced transactivation of TrkB receptor. The results of the present study suggest the potential use of SFs from hNS/PCs-OE in controlling the differentiation potential of AHPCs. Thus, the potential clinical relevance of hNS/PCs-OE is worth pursuing.


Subject(s)
Cell Lineage , Hippocampus/cytology , Neural Stem Cells/cytology , Olfactory Mucosa/cytology , Adult , Animals , Antibodies, Neutralizing/pharmacology , Astrocytes/cytology , Astrocytes/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Humans , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Phosphorylation/drug effects , Receptor, trkB/metabolism , Solubility , Transcriptional Activation/drug effects
14.
Biochem J ; 474(16): 2679-2689, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28666999

ABSTRACT

The mechanisms controlling degradation of cytosolic ß-catenin are important for regulating ß-catenin co-transcriptional activity. Loss of von Hippel-Lindau protein (pVHL) has been shown to stabilize ß-catenin, increasing ß-catenin transactivation and ß-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of ß-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active ß-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble ß-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/ß-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces ß-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of ß-catenin signaling due to pVHL loss.


Subject(s)
14-3-3 Proteins/biosynthesis , Cell Proliferation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , beta Catenin/metabolism , 14-3-3 Proteins/genetics , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , beta Catenin/genetics
15.
PLoS One ; 11(11): e0165971, 2016.
Article in English | MEDLINE | ID: mdl-27832139

ABSTRACT

Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 µM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Curcumin/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , M Phase Cell Cycle Checkpoints/drug effects , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mitosis/drug effects
16.
Ethn Dis ; 26(4): 477-484, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27773974

ABSTRACT

OBJECTIVE: We studied multi-loci variants to identify the contribution of six candidate genes (ADIPOQ, CDH13, LYPLAL1, MC4R, PPARG and PGC1A) in the development of obesity and overweight. DESIGN: We genotyped 404 chromosomes with eleven SNPs in Mexican female adolescents, who were subdivided into two groups (obesity-overweight and normal-weight) using the World Health Organization parameters. Genomic (800 chromosomes) and ancestral (208 chromosomes) controls were included to reduce the population bias. Anthropometric measurements, biochemical parameters, and caloric intake were obtained only in the groups of Mexican female adolescents. RESULTS: A positive genotype-phenotype association was found that involves the multi-allelic combination of three risk alleles (one in PPARG and two in LYPLAL1) with obesity and overweight (OR=3.1, P=.010). This combination also exhibited a significant association with waist circumference (P=.030) and triglycerides levels (P=.030). These associations were supported by a logistic regression analysis adjusted for several confounding variables. CONCLUSIONS: Our data suggest the joint participation of PPARG-LYPLAL1 genes in metabolic disorders development. Hence, these genes could act as potential biomarkers in obesity and overweight. Our findings underscore the complexity of metabolic disorders and provide evidence about the importance of multi-loci analysis to study complex diseases.


Subject(s)
Lysophospholipase/genetics , Mexican Americans/genetics , Obesity/ethnology , Overweight/ethnology , PPAR gamma/genetics , Adolescent , Alleles , Body Mass Index , Female , Genotype , Humans , Male , Mexico , Obesity/genetics , Overweight/genetics , Polymorphism, Single Nucleotide , Waist Circumference
17.
Biochem J ; 473(21): 3805-3818, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27538402

ABSTRACT

The gastrointestinal tract is the largest hormone-producing organ in the body due to a specialized cell population called enteroendocrine cells (EECs). The number of EECs increases in the mucosa of inflammatory bowel disease patients; however, the mechanisms responsible for these changes remain unknown. Here, we show that the pro-inflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα) or dextran sulfate sodium (DSS)-induced colitis increase the number of EECs producing chromogranin A (CgA) in the colonic mucosa of C57BL/6J mice. CgA-positive cells were non-proliferating cells enriched with inactive phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and autophagy markers. Moreover, inhibition of Akt and autophagy prevented the increase in CgA-positive cells after IFNγ/TNFα treatment. Similarly, we observed that CgA-positive cells in the colonic mucosa of patients with colitis expressed Akt and autophagy markers. These findings suggest that Akt signaling and autophagy control differentiation of the intestinal EEC lineage during inflammation.


Subject(s)
Chromogranin A/metabolism , Colon/cytology , Cytokines/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Neuroendocrine Cells/drug effects , Neuroendocrine Cells/metabolism , Animals , Autophagy/drug effects , Blotting, Western , Caco-2 Cells , Colitis/metabolism , Fluorescent Antibody Technique , Humans , Interferon-gamma/pharmacology , Interleukin-1beta/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Tumor Necrosis Factor-alpha/pharmacology
18.
PLoS One ; 10(9): e0137328, 2015.
Article in English | MEDLINE | ID: mdl-26378780

ABSTRACT

The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to ß-dystroglycan, α1-, ß-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.


Subject(s)
Cell Nucleus/metabolism , Dystrophin-Associated Protein Complex/genetics , Dystrophin/genetics , GABAergic Neurons/cytology , Hippocampus/cytology , Animals , Calcium-Binding Proteins/metabolism , Cells, Cultured , Dystroglycans/metabolism , Dystrophin-Associated Protein Complex/metabolism , Female , Fluorescent Antibody Technique , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Protein Isoforms/genetics , Rats , Rats, Wistar
19.
Front Cell Neurosci ; 9: 148, 2015.
Article in English | MEDLINE | ID: mdl-26041990

ABSTRACT

Amyloid peptide is able to promote the activation of microglia and astrocytes in Alzheimer's disease (AD), and this stimulates the production of pro-inflammatory cytokines. Inflammation contributes to the process of neurodegeneration and therefore is a key factor in the development of AD. Some of the most important proteins involved in AD inflammation are: clusterin (CLU), complement receptor 1 (CR1), C reactive protein (CRP), tumor necrosis factor α (TNF-α), the interleukins 1α (IL-1α), 6 (IL-6), 10 (IL-10) and cyclooxygenase 2 (COX-2). In particular, COX-2 is encoded by the prostaglandin-endoperoxide synthase 2 gene (PTGS2). Since variations in the genes that encode these proteins may modify gene expression or function, it is important to investigate whether these variations may change the developing AD. The aim of this study was to determine whether the presence of polymorphisms in the genes encoding the aforementioned proteins is associated in Mexican patients with AD. Fourteen polymorphisms were genotyped in 96 subjects with AD and 100 controls; the differences in allele, genotype and haplotype frequencies were analyzed. Additionally, an ancestry analysis was conducted to exclude differences in genetic ancestry among groups as a confounding factor in the study. Significant differences in frequencies between AD and controls were found for the single-nucleotide polymorphism (SNP) rs20417 within the PTGS2 gene. Ancestry analysis revealed no significant differences in the ancestry of the compared groups, and the association was significant even after adjustment for ancestry and correction for multiple testing, which strengthens the validity of the results. We conclude that this polymorphism plays an important role in the development of the AD pathology and further studies are required, including their proteins.

20.
ACS Chem Neurosci ; 5(12): 1178-91, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25268947

ABSTRACT

Most neurodegenerative diseases are characterized by the presence of protein aggregates. Alzheimer's disease (AD) is the most common cause of dementia in people over age 60. One of the histopathological hallmarks of AD is the presence of tau protein aggregates. Historically, it has been thought that paired helical filaments (PHFs) were the toxic form of tau that assembled to form neurofibrillary tangles (NFTs), but recently there has been evidence that tau oligomers, which form before PHFs and NFTs, could be the structures mediating neurodegeneration even before the fibrillary tau is deposited. Here, we discuss the recent advances in tau oligomer research, their implications on AD and other tauopathies, the mechanisms of tau turnover by the principal protein clearance systems (the proteasome and autophagy), and the potential use of tau oligomers as drug targets for the development of new therapeutic approaches.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Animals , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...