Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1560, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378662

ABSTRACT

Magnonic nano-devices exploit magnons - quanta of spin waves - to transmit and process information within a single integrated platform that has the potential to outperform traditional semiconductor-based electronics. The main missing cornerstone of this information nanotechnology is an efficient scheme for the amplification of propagating spin waves. The recent discovery of spin-orbit torque provided an elegant mechanism for propagation losses compensation. While partial compensation of the spin-wave losses has been achieved, true amplification - the exponential increase in the spin-wave intensity during propagation - has so far remained elusive. Here we evidence the operating conditions to achieve unambiguous amplification using clocked nanoseconds-long spin-orbit torque pulses in magnonic nano-waveguides, where the effective magnetization has been engineered to be close to zero to suppress the detrimental magnon scattering. We achieve an exponential increase in the intensity of propagating spin waves up to 500% at a propagation distance of several micrometers.

2.
Sci Rep ; 12(1): 7246, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35508481

ABSTRACT

Nonlinear self-phase modulation is a universal phenomenon responsible, for example, for the formation of propagating dynamic solitons. It has been reported for waves of different physical nature. However its direct experimental observation for spin waves has been challenging. Here we show that exceptionally strong phase modulation can be achieved for spin waves in microscopic waveguides fabricated from nanometer-thick films of magnetic insulator, which support propagation of spin waves with large amplitudes corresponding to angles of magnetization precession exceeding 10°. At these amplitudes, the nonstationary nonlinear dynamic response of the spin system causes an extreme broadening of the spectrum of spin-wave pulses resulting in a strong spatial variation of the spin-wave wavelength and a temporal variation of the spin-wave phase across the pulse. Our findings demonstrate great complexity of nonlinear wave processes in microscopic magnetic structures and importance of their understanding for technical applications of spin waves in integrated devices.

3.
Nat Commun ; 12(1): 6541, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764266

ABSTRACT

The quanta of magnetic excitations - magnons - are known for their unique ability to undergo Bose-Einstein condensation at room temperature. This fascinating phenomenon reveals itself as a spontaneous formation of a coherent state under the influence of incoherent stimuli. Spin currents have been predicted to offer electronic control of Bose-Einstein condensates, but this phenomenon has not been experimentally evidenced up to now. Here we show that current-driven Bose-Einstein condensation can be achieved in nanometer-thick films of magnetic insulators with tailored nonlinearities and minimized magnon interactions. We demonstrate that, above a certain threshold, magnons injected by the spin current overpopulate the lowest-energy level forming a highly coherent spatially extended state. We quantify the chemical potential of the driven magnon gas and show that, at the critical current, it reaches the energy of the lowest magnon level. Our results pave the way for implementation of integrated microscopic quantum magnonic and spintronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL