Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz. j. med. biol. res ; 34(5): 585-595, May 2001.
Article in English | LILACS | ID: lil-285872

ABSTRACT

Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie), appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc) and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction


Subject(s)
Humans , Animals , Mice , Membrane Proteins/physiology , Prion Diseases/physiopathology , PrPC Proteins/physiology , Copper/metabolism , Endocytosis , Laminin/physiology , Ligands , Membrane Proteins/genetics , Phenotype , PrPC Proteins/genetics , PrPC Proteins/isolation & purification , PrPSc Proteins/genetics
2.
Braz J Med Biol Res ; 34(5): 585-95, 2001 May.
Article in English | MEDLINE | ID: mdl-11323744

ABSTRACT

Prions have been extensively studied since they represent a new class of infectious agents in which a protein, PrPsc (prion scrapie), appears to be the sole component of the infectious particle. They are responsible for transmissible spongiform encephalopathies, which affect both humans and animals. The mechanism of disease propagation is well understood and involves the interaction of PrPsc with its cellular isoform (PrPc) and subsequently abnormal structural conversion of the latter. PrPc is a glycoprotein anchored on the cell surface by a glycosylphosphatidylinositol moiety and expressed in most cell types but mainly in neurons. Prion diseases have been associated with the accumulation of the abnormally folded protein and its neurotoxic effects; however, it is not known if PrPc loss of function is an important component. New efforts are addressing this question and trying to characterize the physiological function of PrPc. At least four different mouse strains in which the PrP gene was ablated were generated and the results regarding their phenotype are controversial. Localization of PrPc on the cell membrane makes it a potential candidate for a ligand uptake, cell adhesion and recognition molecule or a membrane signaling molecule. Recent data have shown a potential role for PrPc in the metabolism of copper and moreover that this metal stimulates PrPc endocytosis. Our group has recently demonstrated that PrPc is a high affinity laminin ligand and that this interaction mediates neuronal cell adhesion and neurite extension and maintenance. Moreover, PrPc-caveolin-1 dependent coupling seems to trigger the tyrosine kinase Fyn activation. These data provide the first evidence for PrPc involvement in signal transduction.


Subject(s)
Membrane Proteins/physiology , PrPC Proteins/physiology , Prion Diseases/physiopathology , Animals , Copper/metabolism , Endocytosis , Humans , Laminin/physiology , Ligands , Membrane Proteins/genetics , Mice , Phenotype , PrPC Proteins/genetics , PrPC Proteins/isolation & purification , PrPSc Proteins/genetics , Signal Transduction
3.
FEBS Lett ; 482(3): 257-60, 2000 Oct 06.
Article in English | MEDLINE | ID: mdl-11024471

ABSTRACT

Prions, the etiological agents for infectious degenerative encephalopathies, act by inducing structural modifications in the cellular prion protein (PrPc). Recently, we demonstrated that PrPc binds laminin (LN) and that this interaction is important for the neuritogenesis of cultured hippocampal neurons. Here we have used the PC-12 cell model to explore the biological role of LN-PrPc interaction. Antibodies against PrPc inhibit cell adhesion to LN-coated culture plaques. Furthermore, chromophore-assisted laser inactivation of cell surface PrPc perturbs LN-induced differentiation and promotes retraction of mature neurites. These results point out to the importance of PrPc as a cell surface ligand for LN.


Subject(s)
Cell Differentiation/physiology , Laminin/physiology , Prions/physiology , Animals , Antibodies/immunology , Cell Adhesion/physiology , Cell Adhesion/radiation effects , Cell Differentiation/radiation effects , Lasers , PC12 Cells , Prions/immunology , Prions/radiation effects , Rats
4.
Brain Res Mol Brain Res ; 76(1): 85-92, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10719218

ABSTRACT

Laminin (LN) plays a major role in neuronal differentiation, migration and survival. Here, we show that the cellular prion protein (PrPc) is a saturable, specific, high-affinity receptor for LN. The PrPc-LN interaction is involved in the neuritogenesis induced by NGF plus LN in the PC-12 cell line and the binding site resides in a carboxy-terminal decapeptide from the gamma-1 LN chain. Neuritogenesis induced by LN or its gamma-1-derived peptide in primary cultures from rat or either wild type or PrP null mice hippocampal neurons, indicated that PrPc is the main cellular receptor for that particular LN domain. These results point out to the importance of the PrPc-LN interaction for the neuronal plasticity mechanism.


Subject(s)
Laminin/metabolism , Neurites/physiology , PrPC Proteins/metabolism , Animals , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/ultrastructure , Mice , Neurons/metabolism , Neurons/ultrastructure , Peptide Fragments/metabolism , PrPSc Proteins/genetics , Protein Binding , Rats , Tumor Cells, Cultured
5.
Nat Med ; 3(12): 1376-82, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9396608

ABSTRACT

Prions, the etiological agents for infectious degenerative encephalopathies, act by entering the cell and inducing conformational changes in PrPC (a normal cell membrane sialoglycoprotein), which result in cell death. A specific cell-surface receptor to mediate PrPC and prion endocytosis has been predicted. Complementary hydropathy let us generate a hypothetical peptide mimicking the receptor binding site. Antibodies raised against this peptide stain the surface of mouse neurons and recognize a 66-kDa membrane protein that binds PrPC both in vitro and in vivo. Furthermore, both the complementary prion peptide and antiserum against it inhibit the toxicity of a prion-derived peptide toward neuronal cells in culture. Such reagents might therefore have therapeutic applications.


Subject(s)
PrPC Proteins/metabolism , Receptors, Cell Surface/analysis , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Animals , Antibodies/immunology , Cells, Cultured , Genetic Techniques , Humans , Mice , Molecular Sequence Data , Neurons/cytology , PrPC Proteins/immunology , PrPC Proteins/toxicity , Rats , Receptors, Cell Surface/chemistry , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...