Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38633790

ABSTRACT

Background: Obesity is on the rise globally in adults and children, including in tropical areas where diseases such as dengue have a substantial burden, particularly in children. Obesity impacts the risk of severe dengue disease; however, the impact on dengue virus (DENV) infection and dengue cases remains an open question. Methods: We used 9 years of data from 5,940 children in the Pediatric Dengue Cohort Study in Nicaragua to examine whether pediatric obesity is associated with increased susceptibility to DENV infection and symptomatic presentation. Analysis was performed using Generalized Estimating Equations adjusted for age, sex, and pre-infection DENV antibody titers. Results: From 2011 to 2019, children contributed 26,273 person-years of observation, and we observed an increase in the prevalence of overweight (from 12% to 17%) and obesity (from 7% to 13%). There were 1,682 DENV infections and 476 dengue cases in the study population. Compared to participants with normal weight, participants with obesity had higher odds of DENV infection (Adjusted Odds Ratio [aOR] 1.21, 95% confidence interval [CI] 1.03-1.42) and higher odds of dengue disease given infection (aOR 1.59, 95% CI 1.15-2.19). Children with obesity infected with DENV showed increased odds of presenting fever (aOR 1.46, 95% CI 1.05-2.02), headache (aOR 1.51, 95% CI 1.07-2.14), and rash (aOR 2.26, 95% CI 1.49-3.44) when compared with children with normal weight. Conclusions: Our results indicate that obesity is associated with increased susceptibility to DENV infection and dengue cases in children, independently of age, sex, and pre-infection DENV antibody titers.

2.
Nat Commun ; 15(1): 382, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195666

ABSTRACT

Dengue viruses (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern. Understanding immune mechanisms that modulate DENV infection outcome is critical for vaccine development. Neutralizing antibodies (nAbs) are an essential component of the protective immune response, yet their measurement often relies on a single cellular substrate and partially mature virions, which does not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we analyze 125 samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long-standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without DC-SIGN and with mature or partially mature virions, we find that nAb potency and the protective NT50 cutoff are greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depends on prior infection history and infecting serotype. Finally, we uncover variations in nAb composition that contribute to protection from symptomatic infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection for vaccines and natural infections.


Subject(s)
Coinfection , Dengue , Chlorocebus aethiops , Animals , Humans , Child , Antibodies, Neutralizing , Cohort Studies , Serogroup , Vero Cells , Dengue/prevention & control
3.
medRxiv ; 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37502957

ABSTRACT

The four dengue virus serotypes (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern worldwide. Understanding immune mechanisms that modulate DENV infection outcome is critical for epidemic preparedness and development of a safe and effective vaccine. Neutralizing antibodies (nAbs) are an essential component of the protective response, yet their measurement often relies on a single cellular substrate and partially mature virions, which do not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we investigated the characteristics of nAbs associated with protection against dengue cases using samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long- standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without the attachment factor DC-SIGN and with mature or partially mature virions, we found that nAb potency and the protective NT 50 cutoff were greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depended on an individual's prior infection history and the subsequent infecting DENV serotype. Finally, we uncovered variations in nAbs composition that contributed to protection from symptomatic DENV infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection in the context of vaccines and natural infections.

4.
EBioMedicine ; 87: 104405, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36508878

ABSTRACT

BACKGROUND: Nipah virus (NiV) causes recurrent outbreaks of lethal respiratory and neurological disease in Southeast Asia. The World Health Organization considers the development of an effective vaccine against NiV a priority. METHODS: We produced two NiV vaccine candidates using the licensed VSV-EBOV vaccine as a backbone and tested its efficacy against lethal homologous and heterologous NiV challenge with Nipah virus Bangladesh and Nipah virus Malaysia, respectively, in the African green monkey model. FINDINGS: The VSV-EBOV vaccine expressing NiV glycoprotein G (VSV-NiVG) induced high neutralising antibody titers and afforded complete protection from homologous and heterologous challenge. The VSV-EBOV vaccine expressing NiV fusion protein F (VSV-NiVF) induced a lower humoral response and afforded complete homologous protection, but only partial heterologous protection. Both vaccines reduced virus shedding from the upper respiratory tract, and virus replication in the lungs and central nervous system. None of the protected animals vaccinated with VSV-NiVG or VSV-NiVF showed histological lesions in the CNS, but one VSV-NiVF-vaccinated animal that was not protected developed severe meningoencephalitis. INTERPRETATION: The VSV-NiVG vaccine offers broad protection against NiV disease. FUNDING: This study was supported by the Intramural Research Program, NIAID, NIH.


Subject(s)
Nipah Virus , Viral Vaccines , Animals , Chlorocebus aethiops , Nipah Virus/genetics , Viral Vaccines/genetics , Virus Replication , Primates , Bangladesh
5.
Microorganisms ; 9(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072604

ABSTRACT

Zika virus (ZIKV), a member of the Flaviviridae family, is an important human pathogen that has caused epidemics in Africa, Southeast Asia, and the Americas. No licensed treatments for ZIKV disease are currently available. Favipiravir (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and ribavirin (1-(ß-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide) are nucleoside analogs that have exhibited antiviral activity against a broad spectrum of RNA viruses, including some flaviviruses. In this study, we strengthened evidence for favipiravir and ribavirin inhibition of ZIKV replication in vitro. Testing in IFNAR-/- mice revealed that daily treatments of favipiravir were sufficient to provide protection against lethal ZIKV challenge in a dose-dependent manner but did not completely abrogate disease. Ribavirin, on the other hand, had no beneficial effect against ZIKV infection in this model and under the conditions examined. Combined treatment of ribavirin and favipiravir did not show improved outcomes over ribavirin alone. Surprisingly, outcome of favipiravir treatment was sex-dependent, with 87% of female but only 25% of male mice surviving lethal ZIKV infection. Since virus mutations were not associated with outcome, a sex-specific host response likely explains the observed sex difference.

6.
EBioMedicine ; 49: 223-231, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31631035

ABSTRACT

BACKGROUND: Ebola virus (EBOV), variant Makona, was the causative agent of the 2013-2016 West African epidemic responsible for almost 30,000 human infections and over 11,000 fatalities. During the epidemic, the development of several experimental vaccines was accelerated through human clinical trials. One of them, the vesicular stomatitis virus (VSV)-based vaccine VSV-EBOV, showed promising efficacy in a phase 3 clinical trial in Guinea and is currently used in the ongoing EBOV outbreak in the northeastern part of the Democratic Republic of the Congo (DRC). This vaccine expresses the EBOV-Kikwit glycoprotein from the 1995 outbreak as the immunogen. METHODS: Here we generated a VSV-based vaccine expressing the contemporary EBOV-Makona glycoprotein. We characterized the vaccine in tissue culture and analyzed vaccine efficacy in the cynomolgus macaque model. Subsequently, we determined the dose-dependent protective efficacy in nonhuman primates against lethal EBOV challenge. FINDINGS: We observed complete protection from disease with VSV-EBOV doses ranging from 1 × 107 to 1 × 101 plaque-forming units. Some protected animals receiving lower vaccine doses developed temporary low-level EBOV viremia. Control animals developed classical EBOV disease and reached euthanasia criteria within a week after challenge. This study demonstrates that very low doses of VSV-EBOV uniformly protect macaques against lethal EBOV challenge. INTERPRETATION: Our study provides missing pre-clinical data supporting the use of reduced VSV-EBOV vaccine doses without decreasing protective efficacy and at the same time increase vaccine safety and availability - two critical concerns in public health response. FUNDING: Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.


Subject(s)
Ebolavirus/immunology , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Vaccination , Vesiculovirus/immunology , Animals , Cytokines/metabolism , Dose-Response Relationship, Immunologic , Female , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/virology , Immunity, Humoral , Macaca fascicularis , Male , Survival Analysis
7.
J Infect Dis ; 218(suppl_5): S434-S437, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29878224

ABSTRACT

Following the Ebola virus epidemic in West Africa, several studies investigated whether there was an effect of Plasmodium coinfection on survival in Ebola virus (EBOV) disease patients. Different effects of coinfection were found in different patient cohorts. To determine whether an effect of Plasmodium coinfection on EBOV survival may exist, we modeled coinfection of Plasmodium yoelii and mouse-adapted EBOV (MA-EBOV) in CD1 mice. Subsequent infection with MA-EBOV at different time points after P. yoelii infection did not have any significant effect on survival.


Subject(s)
Coinfection/mortality , Hemorrhagic Fever, Ebola/mortality , Malaria/mortality , Plasmodium yoelii , Animals , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...