Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 417: 81-94, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31430528

ABSTRACT

Intrathecal (i.t.) administration of quinpirole, a dopamine (DA) D2-like receptor agonist, produces antinociception to mechanonociceptive stimuli but not to thermonociceptive stimuli. To determine a cellular mechanism for the specific antinociceptive effect of D2-like receptor activation on mechanonociception, we evaluated the effect of quinpirole on voltage-gated Ca2+ influx in cultured dorsal root ganglion (DRG) neurons and the D2 DA receptor distribution in subpopulations of rat nociceptive DRG neurons. Small-diameter DRG neurons were classified into IB4+ (nonpeptidergic) and IB4- (peptidergic). Intracellular [Ca2+] microfluorometry and voltage-clamp experiments showed that quinpirole reduced Ca2+ influx and inhibited the high voltage-activated Ca2+ current (HVA-ICa) in half of IB4+ neurons, leaving Ca2+ entry and HVA-ICa in IB4- neurons nearly unaffected. Pretreatment with ω-conotoxin MVIIA prevented the effect of quinpirole on HVA-ICa from IB4+ neurons, indicating that quinpirole mainly inhibits CaV2.2 channels. Immunofluorescence experiments showed that D2 DA receptor was present mainly in IB4+ small DRG neurons. Finally, in behavioral experiments in rats, the clinically approved D2-like receptor agonist pramipexole produced spinal antinociception in a similar fashion to quinpirole, with a significant effect only in the mechanonociceptive test. Our results explain, at least in part, why D2-like receptor agonists produce antinociception on mechanonociceptors.


Subject(s)
Nociception/drug effects , Nociception/physiology , Receptors, Dopamine D2/metabolism , Spinal Cord/drug effects , Spinal Cord/physiology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Animals , Calcium/metabolism , Calcium/physiology , Dopamine Agonists/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiology , Male , Nociceptors/drug effects , Nociceptors/metabolism , Nociceptors/physiology , Pramipexole/pharmacology , Quinpirole/pharmacology , Rats , Rats, Wistar , Spinal Cord/metabolism
2.
Eur J Pharmacol ; 853: 56-64, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30876975

ABSTRACT

Opioids are potent analgesic drugs, but their use has been limited due to their side effects. Antinociceptive effects of D2-like receptor agonists such as quinpirole have been shown at the spinal cord level; however, their efficacy is not as high as that of opioids. Dopaminergic agonists are long-prescribed and well-tolerated drugs that have been useful to treat clinically and experimentally painful conditions. Because current pain treatments are not completely effective, the aim of this work was to determine if a D2-like receptor agonist improves the antinociceptive effects of a µ-opioid receptor agonist. Drugs were intrathecally administered in adult rats; mechanonociceptive and thermonociceptive tests were carried out. Intraplantar injection of complete Freund's adjuvant (CFA) and sciatic loose ligation (SLL) were used for inflammatory and neuropathic models of pain, respectively. In intact animals, D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; a µ-opioid receptor agonist) increased the paw withdrawal latencies (PWL) in thermal and mechanical nociceptive tests in a dose-dependent manner. Quinpirole (D2-like receptor agonist) increased PWL only in mechanonociception. In the presence of quinpirole (1 nmol), the ED50 of the mechanical antinociceptive effect of DAMGO was significantly decreased (8-fold). Coadministration of 1 nmol quinpirole and 30 pmol DAMGO completely reversed hyperalgesia in the CFA model, whereas 100 pmol DAMGO plus 1 nmol quinpirole reversed the allodynia in the SLL model. This work offers evidence about a synergistic antinociceptive effect between opioidergic and dopaminergic drugs. This combination may relieve painful conditions resistant to conventional treatments, and it may reduce the adverse effects of chronic opioid administration.


Subject(s)
Analgesics/pharmacology , Neuralgia/drug therapy , Nociception/drug effects , Receptors, Dopamine D2/agonists , Receptors, Opioid, mu/agonists , Analgesics/therapeutic use , Animals , Disease Models, Animal , Drug Synergism , Inflammation/drug therapy , Male , Neuralgia/physiopathology , Rats , Rats, Wistar , Spinal Cord/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...