Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5792, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34608149

ABSTRACT

Materials with strongly correlated electrons often exhibit interesting physical properties. An example of these materials is the layered oxide perovskite Sr2RuO4, which has been intensively investigated due to its unusual properties. Whilst the debate on the symmetry of the superconducting state in Sr2RuO4 is still ongoing, a deeper understanding of the Sr2RuO4 normal state appears crucial as this is the background in which electron pairing occurs. Here, by using low-energy muon spin spectroscopy we discover the existence of surface magnetism in Sr2RuO4 in its normal state. We detect static weak dipolar fields yet manifesting at an onset temperature higher than 50 K. We ascribe this unconventional magnetism to orbital loop currents forming at the reconstructed Sr2RuO4 surface. Our observations set a reference for the discovery of the same magnetic phase in other materials and unveil an electronic ordering mechanism that can influence electron pairing with broken time reversal symmetry.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(2 Pt 2): 026126, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16605417

ABSTRACT

We study the effect of varying strength delta of bond randomness on the phase transition of the three-dimensional Potts model for large q. The cooperative behavior of the system is determined by large correlated domains in which the spins point in the same direction. These domains have a finite extent in the disordered phase. In the ordered phase there is a percolating cluster of correlated spins. For a sufficiently large disorder delta>deltat this percolating cluster coexists with a percolating cluster of noncorrelated spins. Such a coexistence is only possible in more than two dimensions. We argue and check numerically that deltat is the tricritical disorder, which separates the first- and second-order transition regimes. The tricritical exponents are estimated as betat/vt=0.10(2) and vt=0.67(4). We claim these exponents are q independent for sufficiently large q. In the second-order transition regime the critical exponents betat/vt=0.60(2) and vt=0.73(1) are independent of the strength of disorder.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 2): 056112, 2004 May.
Article in English | MEDLINE | ID: mdl-15244888

ABSTRACT

The phase transition in the q -state Potts model with homogeneous ferromagnetic couplings is strongly first order for large q, while it is rounded in the presence of quenched disorder. Here we study this phenomenon on different two-dimensional lattices by using the fact that the partition function of the model is dominated by a single diagram of the high-temperature expansion, which is calculated by an efficient combinatorial optimization algorithm. For a given finite sample with discrete randomness the free energy is a piecewise linear function of the temperature, which is rounded after averaging, however, the discontinuity of the internal energy at the transition point (i.e., the latent heat) stays finite even in the thermodynamic limit. For a continuous disorder, instead, the latent heat vanishes. At the phase transition point the dominant diagram percolates and the total magnetic moment is related to the size of the percolating cluster. Its fractal dimension is found d(f) = ( 5 + square root of 5)/4 and it is independent of the type of the lattice and the form of disorder. We argue that the critical behavior is exclusively determined by disorder and the corresponding fixed point is the isotropic version of the so-called infinite randomness fixed point, which is realized in random quantum spin chains. From this mapping we conjecture the values of the critical exponents as beta=2- d(f), beta(s) =1/2, and nu=1.

SELECTION OF CITATIONS
SEARCH DETAIL
...