Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
J Acoust Soc Am ; 149(4): 2531, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33940862

ABSTRACT

The soundscape of the Northeast Pacific Ocean is studied with emphasis on frequencies in the range 63-125 Hz. A 34-year (1964-1998) increase and seasonal fluctuations (1994-2006) are investigated. This is achieved by developing a simple relationship between the total radiated power of all ocean sound sources and the spatially averaged mean-square sound pressure in terms of the average source factor, source depth, and sea surface temperature (SST). The formula so derived is used to predict fluctuations in the sound level in the range 63-125 Hz with an amplitude of 1.2 dB and a period of 1 year associated with seasonal variations in the SST, which controls the amount of sound energy trapped in the sound fixing and ranging (SOFAR) channel. Also investigated is an observed 5 dB increase in the same frequency range in the Northeast Pacific Ocean during the late 20th century [Andrew, Howe, Mercer, and Dzieciuch (2002). ARLO 3, 65-70]. The increase is explained by the increase in the total number of ocean-going ships and their average gross tonnage.

2.
J Acoust Soc Am ; 147(2): 877, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32113322

ABSTRACT

The year-long Philippine Sea (2010-2011) experiment (PhilSea) was an extensive deep water acoustic propagation experiment in which there were six different sources transmitting to a water column spanning a vertical line array. The six sources were placed in an array with a radius of 330 km and transmitted at frequencies in the 200-300 Hz and 140-205 Hz bands. The PhilSea frequencies are higher than previous deep water experiments in the North Pacific for which modal analyses were performed. Further, the acoustic paths sample a two-dimensional area that is rich in internal tides, waves, and eddies. The PhilSea observations are, thus, a new opportunity to observe acoustic modal variability at higher frequencies than before and in an oceanographically dynamic region. This paper focuses on mode observations around the mid-water depths. The mode observations are used to compute narrowband statistics such as transmission loss and broadband statistics such as peak pulse intensity, travel time wander, time spreads, and scintillation indices. The observations are then compared with a new hybrid broadband transport theory. The model-data comparisons show excellent agreement for modes 1-10 and minor deviations for the rest. The discrepancies in the comparisons are related to the limitations of the hybrid model and oceanographic fluctuations other than internal waves.

3.
J Acoust Soc Am ; 146(6): 4754, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31893754

ABSTRACT

This study identifies general characteristics of methods to estimate the absolute range between an acoustic transmitter and a receiver in the deep ocean. The data are from three days of the PhilSea10 experiment with a single fixed transmitter depth (∼998 m) and 150 receiver depths (∼210-5388 m) of known location, and a great-circle transmitter-receiver distance of ∼510 km. The proposed ranging methods compare observed acoustic records with synthetic records computed through the HYCOM (hybrid coordinate ocean model) model. More than 8900 transmissions over 3 days characterize the statistical variation of range errors. Reliable ranging methods de-emphasize the parts of the data records least likely to be reproduced by the synthetics, which include arrival amplitudes, the later parts of the acoustic records composed of nearly horizontally launched rays (i.e., the finale), and waves that sample a narrow span of ocean depths. The ranging methods proposed normalize amplitudes, measure travel times, or reject parts of the waveforms beyond a critical time. All deliver reliable range estimates based on the time and path-averaged HYCOM model, although the final method performs best. The principles behind these methods are transportable and expected to provide reliable range estimates in different deep water settings.

4.
J Acoust Soc Am ; 140(5): 3952, 2016 11.
Article in English | MEDLINE | ID: mdl-27908051

ABSTRACT

A mechanism is presented by which the observed acoustic intensity is made to vary due to changes in the acoustic path that are caused by internal-tide vertical fluid displacements. The position in range and depth of large-scale caustic structure is determined by the background sound-speed profile. Internal tides cause a deformation of the background profile, changing the positions of the caustic structures-which can introduce intensity changes at a distant receiver. Gradual fades in the acoustic intensity occurring over timescales similar to those of the tides were measured during a low-frequency (284-Hz) acoustic scattering experiment in the Philippine Sea in 2009 [White et al., J. Acoust. Soc. Am. 134(4), 3347-3358 (2013)]. Parabolic equation and Hamiltonian ray-tracing calculations of acoustic propagation through a plane-wave internal tide environmental model employing sound-speed profiles taken during the experiment indicate that internal tides could cause significant gradual changes in the received intensity. Furthermore, the calculations demonstrate how large-scale perturbations to the index of refraction can result in variation in the received intensity.

5.
J Acoust Soc Am ; 140(1): 216, 2016 07.
Article in English | MEDLINE | ID: mdl-27475148

ABSTRACT

Observations of the spread of wander-corrected averaged pulses propagated over 510 km for 54 h in the Philippine Sea are compared to Monte Carlo predictions using a parabolic equation and path-integral predictions. Two simultaneous m-sequence signals are used, one centered at 200 Hz, the other at 300 Hz; both have a bandwidth of 50 Hz. The internal wave field is estimated at slightly less than unity Garrett-Munk strength. The observed spreads in all the early ray-like arrivals are very small, <1 ms (for pulse widths of 17 and 14 ms), which are on the order of the sampling period. Monte Carlo predictions show similar very small spreads. Pulse spread is one consequence of scattering, which is assumed to occur primarily at upper ocean depths where scattering processes are strongest and upward propagating rays refract downward. If scattering effects in early ray-like arrivals accumulate with increasing upper turning points, spread might show a similar dependence. Real and simulation results show no such dependence. Path-integral theory prediction of spread is accurate for the earliest ray-like arrivals, but appears to be increasingly biased high for later ray-like arrivals, which have more upper turning points.

6.
J Acoust Soc Am ; 138(4): 2015-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520285

ABSTRACT

Predictions of log-amplitude variance are compared against sample log-amplitude variances reported by White, Andrew, Mercer, Worcester, Dzieciuch, and Colosi [J. Acoust. Soc. Am. 134, 3347-3358 (2013)] for measurements acquired during the 2009 Philippine Sea experiment and associated Monte Carlo computations. The predictions here utilize the theory of Munk and Zachariasen [J. Acoust. Soc. Am. 59, 818-838 (1976)]. The scattering mechanism is the Garrett-Munk internal wave spectrum scaled by metrics based on measured environmental profiles. The transmitter was at 1000 m depth and the receivers at nominal range 107 km and depths 600-1600 m. The signal was a broadband m-sequence centered at 284 Hz. Four classes of propagation paths are examined: the first class has a single upper turning point at about 60 m depth; the second and third classes each have two upper turning points at roughly 250 m; the fourth class has three upper turning points at about 450 m. Log-amplitude variance for all paths is predicted to be 0.04-0.09, well within the regime of validity of either Born or Rytov scattering. The predictions are roughly consistent with the measured and Monte Carlo log-amplitude variances, although biased slightly low. Paths turning in the extreme upper ocean (near the mixed layer) seem to incorporate additional scattering mechanisms not included in the original theory.

7.
J Acoust Soc Am ; 134(4): 3144-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116512

ABSTRACT

Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett-Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty.


Subject(s)
Acoustics , Models, Statistical , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Equipment Design , Motion , Oceanography/instrumentation , Pacific Ocean , Reproducibility of Results , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Sound Spectrography , Time Factors , Transducers , Uncertainty
8.
J Acoust Soc Am ; 134(4): 3230-41, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116519

ABSTRACT

During the North Pacific Acoustic Laboratory Philippine Sea 2009 experiment, towed array receptions were made from a towed source as the two ships transited from a separation of several Convergence Zones through a Closest Point of Approach at 3 km. A combination of narrowband tones and broadband pulses were transmitted covering the frequency band 79-535 Hz. The received energy arrives from two general paths-direct path and bottom bounce. Bearing-time records of the narrowband arrivals at times show a 35° spread in the angle of arrival of the bottom bounce energy. Doppler processing of the tones shows significant frequency spread of the bottom bounce energy. Two-dimensional modeling using measured bathymetry, a geoacoustic parameterization based upon the geological record, and measured sound-speed field was performed. Inclusion of the effects of seafloor roughness and surface waves shows that in-plane scattering from rough interfaces can explain much of the observed spread in the arrivals. Evidence of out-of-plane scattering does exist, however, at short ranges. The amount of out-of-plane scattering is best observed in the broadband impulse-beam response analysis, which in-plane surface roughness modeling cannot explain.


Subject(s)
Acoustics , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Doppler Effect , Geologic Sediments , Models, Theoretical , Motion , Oceanography/instrumentation , Oceans and Seas , Scattering, Radiation , Signal Processing, Computer-Assisted , Sound Spectrography , Surface Properties , Time Factors , Transducers , Water Movements
9.
J Acoust Soc Am ; 134(4): 3282-98, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116523

ABSTRACT

Conventional and adaptive plane-wave beamforming with simultaneous recordings by large-aperture horizontal and vertical line arrays during the 2009 Philippine Sea Engineering Test (PhilSea09) reveal the rate of occurrence and the two-dimensional arrival structure of seismic phases that couple into the deep ocean. A ship-deployed, controlled acoustic source was used to evaluate performance of the horizontal array for a range of beamformer adaptiveness levels. Ninety T-phases from unique azimuths were recorded between Yeardays 107 to 119. T-phase azimuth and S-minus-P-phase time-of-arrival range estimates were validated using United States Geological Survey seismic monitoring network data. Analysis of phases from a seismic event that occurred on Yearday 112 near the east coast of Taiwan approximately 450 km from the arrays revealed a 22° clockwise evolution of T-phase azimuth over 90 s. Two hypotheses to explain such evolution-body wave excitation of multiple sources or in-water scattering-are presented based on T-phase origin sites at the intersection of azimuthal great circle paths and ridge/coastal bathymetry. Propagation timing between the source, scattering region, and array position suggests the mechanism behind the evolution involved scattering of the T-phase from the Ryukyu Ridge and a T-phase formation/scattering location estimation error of approximately 3.2 km.


Subject(s)
Acoustics , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Equipment Design , Fourier Analysis , Models, Theoretical , Motion , Oceanography/instrumentation , Oceans and Seas , Philippines , Reproducibility of Results , Scattering, Radiation , Sound Spectrography , Time Factors , Transducers
10.
J Acoust Soc Am ; 134(4): 3332-46, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116527

ABSTRACT

Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source.


Subject(s)
Acoustics , Models, Theoretical , Oceanography/methods , Seawater , Sound , Computer Simulation , Motion , Numerical Analysis, Computer-Assisted , Oceans and Seas , Scattering, Radiation , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors , Water Movements
11.
J Acoust Soc Am ; 134(4): 3307-17, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116525

ABSTRACT

Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.


Subject(s)
Acoustics , Geologic Sediments , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Equipment Design , Models, Theoretical , Motion , Noise , Oceanography/instrumentation , Pacific Ocean , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Sound Spectrography , Surface Properties , Time Factors , Transducers
12.
J Acoust Soc Am ; 134(4): 3347-58, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116528

ABSTRACT

In the spring of 2009, broadband transmissions from a ship-suspended source with a 284-Hz center frequency were received on a moored and navigated vertical array of hydrophones over a range of 107 km in the Philippine Sea. During a 60-h period over 19,000 transmissions were carried out. The observed wavefront arrival structure reveals four distinct purely refracted acoustic paths: One with a single upper turning point near 80 m depth, two with a pair of upper turning points at a depth of roughly 300 m, and one with three upper turning points at 420 m. Individual path intensity, defined as the absolute square of the center frequency Fourier component for that arrival, was estimated over the 60-h duration and used to compute scintillation index and log-intensity variance. Monte Carlo parabolic equation simulations using internal-wave induced sound speed perturbations obeying the Garrett-Munk internal-wave energy spectrum were in agreement with measured data for the three deeper-turning paths but differed by as much as a factor of four for the near surface-interacting path.


Subject(s)
Acoustics , Models, Statistical , Oceanography/methods , Seawater , Sound , Water Movements , Acoustics/instrumentation , Computer Simulation , Equipment Design , Fourier Analysis , Monte Carlo Method , Motion , Numerical Analysis, Computer-Assisted , Oceanography/instrumentation , Oceans and Seas , Philippines , Reproducibility of Results , Sound Spectrography , Surface Properties , Time Factors , Transducers
13.
J Acoust Soc Am ; 134(4): 3359-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116529

ABSTRACT

A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.


Subject(s)
Acoustics , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Equipment Design , Models, Theoretical , Motion , Noise , Oceanography/instrumentation , Oceans and Seas , Philippines , Scattering, Radiation , Signal Processing, Computer-Assisted , Sound Spectrography , Temperature , Time Factors , Transducers , Water Movements
14.
J Acoust Soc Am ; 134(4): 3386-94, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24116531

ABSTRACT

The propagation of weakly dispersive modal pulses is investigated using data collected during the 2004 long-range ocean acoustic propagation experiment (LOAPEX). Weakly dispersive modal pulses are characterized by weak dispersion- and scattering-induced pulse broadening; such modal pulses experience minimal propagation-induced distortion and are thus well suited to communications applications. In the LOAPEX environment modes 1, 2, and 3 are approximately weakly dispersive. Using LOAPEX observations it is shown that, by extracting the energy carried by a weakly dispersive modal pulse, a transmitted communications signal can be recovered without performing channel equalization at ranges as long as 500 km; at that range a majority of mode 1 receptions have bit error rates (BERs) less than 10%, and 6.5% of mode 1 receptions have no errors. BERs are estimated for low order modes and compared with measurements of signal-to-noise ratio (SNR) and modal pulse spread. Generally, it is observed that larger modal pulse spread and lower SNR result in larger BERs.


Subject(s)
Acoustics , Oceanography/methods , Seawater , Sound , Acoustics/instrumentation , Equipment Design , Models, Theoretical , Motion , Oceanography/instrumentation , Pacific Ocean , Scattering, Radiation , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio , Sound Spectrography , Time Factors , Transducers
15.
J Acoust Soc Am ; 132(4): 2224-31, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23039419

ABSTRACT

Data collected during the 2004 Long-range Ocean Acoustic Propagation Experiment provide absolute intensities and travel times of acoustic pulses at ranges varying from 50 to 3200 km. In this paper a subset of these data is analyzed, focusing on the effects of seafloor reflections at the shortest transmission range of approximately 50 km. At this range bottom-reflected (BR) and surface-reflected, bottom-reflected energy interferes with refracted arrivals. For a finite vertical receiving array spanning the sound channel axis, a high mode number energy in the BR arrivals aliases into low mode numbers because of the vertical spacing between hydrophones. Therefore, knowledge of the BR paths is necessary to fully understand even low mode number processes. Acoustic modeling using the parabolic equation method shows that inclusion of range-dependent bathymetry is necessary to get an acceptable model-data fit. The bottom is modeled as a fluid layer without rigidity, without three dimensional effects, and without scattering from wavelength-scale features. Nonetheless, a good model-data fit is obtained for sub-bottom properties estimated from the data.


Subject(s)
Acoustics , Geologic Sediments , Sound , Water , Acoustics/instrumentation , Computer Simulation , Models, Theoretical , Motion , Numerical Analysis, Computer-Assisted , Oceans and Seas , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors
16.
J Acoust Soc Am ; 131(6): 4409-27, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22712915

ABSTRACT

The results of mode-processing measurements of broadband acoustic wavefields made in the fall of 2004 as part of the Long-Range Ocean Acoustic Propagation Experiment (LOAPEX) in the eastern North Pacific Ocean are reported here. Transient wavefields in the 50-90 Hz band that were recorded on a 1400-m long 40 element vertical array centered near the sound channel axis are analyzed. This array was designed to resolve low-order modes. The wavefields were excited by a ship-suspended source at seven ranges, between approximately 50 and 3200 km, from the receiving array. The range evolution of broadband modal arrival patterns corresponding to fixed mode numbers ("modal group arrivals") is analyzed with an emphasis on the second (variance) and third (skewness) moments. A theory of modal group time spreads is described, emphasizing complexities associated with energy scattering among low-order modes. The temporal structure of measured modal group arrivals is compared to theoretical predictions and numerical simulations. Theory, simulations, and observations generally agree. In cases where disagreement is observed, the reasons for the disagreement are discussed in terms of the underlying physical processes and data limitations.

17.
J Acoust Soc Am ; 129(2): 642-51, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21361423

ABSTRACT

Measurements (1994-2007) from four cabled-to-shore hydrophone systems located off the North American west coast permit extensive comparisons between "contemporary" low frequency ship traffic noise (25-50 Hz) collected in the past decade to measurements made over 1963-1965 with the same in-water equipment at the same sites. An increase of roughly 10 dB over the band 25-40 Hz at one site has already been reported [Andrew et al., Acoust. Res. Lett. Online 3(2), 65-70 (2002)]. Newly corrected data from the remaining three systems generally corroborate this increase. Simple linear trend lines of the contemporary traffic noise (duration 6 to 12+ years) show that recent levels are slightly increasing, holding steady, or decreasing. These results confirm the prediction by Ross that the rate of increase in traffic noise would be far less at the end of the 20th century compared to that observed in the 1950s and 1960s.


Subject(s)
Acoustics , Environmental Monitoring/methods , Noise, Transportation , Ships , Acoustics/instrumentation , Environmental Monitoring/instrumentation , Geologic Sediments , Models, Theoretical , Oceans and Seas , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors , Transducers
18.
J Acoust Soc Am ; 126(3): 1069-83, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19739719

ABSTRACT

Observations of scattering of low-frequency sound in the ocean have focused largely on effects at long ranges, involving multiple scattering events. Fluctuations due to one and two scattering events are analyzed here, using 75-Hz broadband signals transmitted in the eastern North Pacific Ocean. The experimental geometry gives two purely refracted arrivals. The temporal and vertical scales of phase and intensity fluctuations for these two ray paths are compared with predictions based on the weak fluctuation theory of Munk and Zachariasen, which assumes internal-wave-induced sound-speed perturbations [J. Acoust. Soc. Am. 59, 818-838 (1976)]. The comparisons show that weak fluctuation theory describes the frequency and vertical-wave-number spectra of phase and intensity for the two paths reasonably well. The comparisons also show that a resonance condition exists between the local acoustic ray and the internal-wave field, as predicted by Munk and Zachariasen, such that only internal waves whose crests are parallel to the local ray path contribute to acoustic scattering. This effect leads to filtering of the acoustic spectra relative to the internal-wave spectra, such that steep rays do not acquire scattering contributions due to low-frequency internal waves.

19.
J Acoust Soc Am ; 126(2): 599-606, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19640024

ABSTRACT

Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.

20.
J Acoust Soc Am ; 125(4): 1919-29, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19354367

ABSTRACT

Propagation of energy along the sound channel axis cannot be formally described in terms of geometrical acoustics due to repeated cusped caustics along the axis. In neighborhoods of these cusped caustics, a very complicated interference pattern is observed. Neighborhoods of interference grow with range and overlap at long ranges. This results in the formation of a complex interference wave--the axial wave--that propagates along the sound channel axis like a wave belonging to a crescendo of near-axial arrivals. The principal properties of this wave are calculated for the actual space-time configuration realized during a 2004 long-range propagation experiment conducted in the North Pacific. The experiment used M-sequences at 68.2 and 75 Hz, transmitter depths from 350 to 800 m, and ranges from 50 to 3200 km. Calculations show that the axial wave would be detectable for an optimal geometry-both transmitter and receiver at the sound channel axis--for a "smooth" range-dependent sound speed field. The addition of sound speed perturbations--induced here by simulated internal waves--randomizes the acoustic field to the extent that the axial wave becomes undetectable. These results should be typical for mid-latitude oceans with similar curvatures about the sound speed minimum.

SELECTION OF CITATIONS
SEARCH DETAIL