Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 155(4): 321-331, 2018 04.
Article in English | MEDLINE | ID: mdl-29374087

ABSTRACT

Overfed hens selected for their rapid growth become fatter and develop reproductive disorders. Herein, we aimed to demonstrate that food restriction leading to a weight reduction and/or a supplementation with fish oil may be effective in preventing reproductive disorders through the regulation of adipokine expression in broiler hens. This study included four groups of food restricted (Rt) or ad libitum hens (Ad, feeding at a rate 1.7 times greater than Rt hens) supplemented or unsupplemented with fish oil (1%). The Rt diet significantly increased plasma chemerin (RARRES2) levels during the laying period, delayed sexual maturity by one week and improved egg quality and fertility. These effects were associated with higher progesterone production in response to IGF1 (or LH) in cultured granulosa cells and in vivo egg yolk, as compared with Ad hens. Fish oil supplementation had similar effects to the Rt diet on progesterone (P < 0.05), but without any effect on fertility. Using RT-PCR, we found that RARRES2 levels were lower in theca cells of Rt hens and NAMPT levels were increased by the fish oil supplementation. A significant positive correlation between RARRES2 expression in granulosa cells and the weight of F1 preovulatory follicle was observed, as well as a negative correlation of plasma RARRES2 levels with hatchability. Thus, food restriction but not fish oil supplementation improved fertility, and this was associated with variations in RARRES2 plasma and ovarian expression in hens.


Subject(s)
Chemokines/metabolism , Diet/veterinary , Fish Oils/administration & dosage , Food Deprivation , Granulosa Cells/drug effects , Ovarian Follicle/drug effects , Reproduction , Animal Feed , Animals , Body Weight/drug effects , Caloric Restriction , Chickens , Egg Yolk/metabolism , Estradiol/blood , Female , Fertility , Granulosa Cells/cytology , Granulosa Cells/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Progesterone/blood
2.
PLoS One ; 13(1): e0191121, 2018.
Article in English | MEDLINE | ID: mdl-29364913

ABSTRACT

BACKGROUND: Reproductive hens are subjected to a restricted diet to limit the decline in fertility associated with change in body mass. However, endocrine and tissue responses to diet restriction need to be documented. OBJECTIVE: We evaluated the effect of different levels of feed restriction, with or without fish oil supplementation, on metabolic parameters and adipokine levels in plasma and metabolic tissues of reproductive hens. METHODS: We designed an in vivo protocol involving 4 groups of hens; RNS: restricted (Rt) unsupplemented, ANS: ad libitum (Ad, receiving an amount of feed 1.7 times greater than animals on the restricted diet) unsupplemented, RS: Rt supplemented, and AS: Ad supplemented. The fish oil supplement was used at 1% of the total diet composition. RESULTS: Hens fed with the Rt diet had a significantly (P < 0.0001) lower growth than Ad hens, while the fish oil supplementation had no effect on these parameters. Furthermore, the bioelectrical impedance analysis (BIA) and the fat ultrasonographic examinations produced similar results to the other methods that required animals to be killed (carcass analysis and weight of adipose tissue). In addition, the Rt diet significantly (P < 0.05) decreased plasma levels of triglycerides, phospholipids, glucose and ADIPOQ, and fish oil supplementation decreased plasma levels of RARRES2. We also showed a positive correlation between insulin values and ADIPOQ or NAMPT or RARRES2 values, and a negative correlation of fat percentage to RARRES2 values. Moreover, the effects of the Rt diet and fish oil supplementation on the mRNA expression depended on the factors tested and the hen age. CONCLUSIONS: Rt diet and fish oil supplementation are able to modulate metabolic parameters and the expression of adipokines and their receptors in metabolic tissue.


Subject(s)
Adipokines/blood , Animal Feed , Caloric Restriction , Fatty Acids/administration & dosage , Fish Oils/administration & dosage , RNA, Messenger/genetics , Adipokines/genetics , Animals , Chickens , Egg Yolk/metabolism , Fatty Acids/metabolism , Female , Liver/metabolism , Muscles/metabolism
3.
Poult Sci ; 93(7): 1764-73, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24864287

ABSTRACT

The poultry meat industry is faced with various quality issues related to variations in the ultimate pH of breast meat. The aim of this study was to evaluate the possibility to control breast ultimate pH by distributing finishing diets varying in amino acid (AA) and energy content for a short period before slaughter. Experimental diets were distributed to PM3 broilers on the last 3 d before slaughter (36 d of age). They consisted of a control (C) diet (3,150 kcal/kg; 200 g/kg of CP; 10.0 g/kg of true digestible Lys) with adequate amounts of AA other than Lys, 6 diets isocaloric to the control diet including 3 Lys-deficient (8.0 g/kg) diets with an adequate (Lys-/AA), low (Lys-/AA-), or high (Lys-/AA+) amount of other essential AA calculated in relation to Lys, and 3 Lys-rich (12.0 g/kg) diets with an adequate (Lys+/AA), low (Lys+/AA-), or high (Lys+/AA+) amount of other essential AA calculated in relation to Lys, and 2 diets isoproteic to C with a high (3,300 kcal/kg, E+) or low (3,000 kcal/kg, E-) energy content. Broiler feed consumption and growth performance were slightly affected by AA and energy content during the finishing period. Feed intake (33-36 d) was lower with the Lys+/AA+ and E+, and FCR between 24 and 36 d was higher with the Lys-/AA- and E- than with the C diet. Body weight at d 36 was lower in Lys-/AA-, Lys+/AA+, and E+ than in C, whereas the breast meat yield and abdominal fatness were not affected by diet. Lower pH values were observed in broilers fed Lys-deficient diets containing a high amount of other AA (Lys-/AA+) than in broilers fed diets containing low (AA-) or adequate (AA) amounts of other AA. This study shows that it is possible to alter the pH of breast meat by changing AA profile over a short period before slaughter, with limited impact on broiler growth and carcass composition.


Subject(s)
Amino Acids, Essential/metabolism , Chickens/physiology , Dietary Proteins/metabolism , Energy Intake , Meat/analysis , Meat/standards , Pectoralis Muscles/physiology , Amino Acids, Essential/administration & dosage , Animal Nutritional Physiological Phenomena , Animals , Body Composition , Chickens/growth & development , Color , Dietary Proteins/administration & dosage , Digestion , Hydrogen-Ion Concentration , Male , Random Allocation , Time Factors
4.
Poult Sci ; 93(1): 85-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24570427

ABSTRACT

Two experiments were conducted in broiler chickens to compare the effect of different Se sources on Se tissue enrichment: sodium selenite (SS), seleno-yeast (SY), and a new organic Se source (SO) containing 2-hydroxy-4-methylselenobutanoic acid (HMSeBA) as an active substance. For each experiment, treatments differed only in source or dose of Se additive. Relative efficiency was compared by plasma and tissue [muscle (pectoralis major) and liver] total Se concentrations. The first experiment compared Se sources (SS, SY, and SO) at different concentrations (mg of Se/kg of feed; SS-0.3; SY-0.1 and -0.3; SO-0.1 and -0.3; and a negative control, 0) in broilers between 0 and 42 d of age. Plasma, liver, and muscle Se concentrations were improved by all Se sources at both d 21 and 42 compared with the negative control group. Between Se sources, minor differences were observed for plasma and liver results, whereas a significant dose effect was observed from 0.1 to 0.3 mg of Se/kg of feed (P < 0.05) for each source. Muscle Se concentrations were improved such as SO > SY > SS (P < 0.05). Moreover, the relative muscle Se enrichment comparison, using linear regression slope ratio, indicated an average of 1.48-fold (95% CI 1.38, 1.58) higher Se deposition in muscle for SO compared with SY. In the second experiment, excessive dietary doses of 5 mg of Se/kg of feed from SS and SO showed a lower deleterious effect of SO on BW and feed intake in comparison with standard Se doses (P < 0.05). Seleno amino acid measurements conducted on different tissues of animals fed SO at 0.5 mg/kg of feed showed that HMSeBA is fully converted into selenomethionine and selenocysteine. These results of both experiments demonstrate the higher relative bioavailability of SO compared with SS and SY as determined through tissue Se enrichment.


Subject(s)
Butyrates/pharmacology , Chickens , Selenium Compounds/pharmacology , Selenium/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens/blood , Diet/veterinary , Dietary Supplements , Liver/chemistry , Liver/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Selenium/administration & dosage , Selenocysteine , Selenomethionine
5.
PLoS One ; 8(2): e57670, 2013.
Article in English | MEDLINE | ID: mdl-23451257

ABSTRACT

BACKGROUND: Environmental challenges might affect the maternal organism and indirectly affect the later ontogeny of the progeny. We investigated the cross-generation impact of a moderate heat challenge in chickens. We hypothesized that a warm temperature--within the thermotolerance range--would affect the hormonal environment provided to embryos by mothers, and in turn, affect the morphology and behavioral phenotype of offspring. METHODOLOGY/PRINCIPAL FINDINGS: Laying hens were raised under a standard thermal condition at 21°C (controls) or 30°C (experimental) for 5 consecutive weeks. A significant increase was observed in the internal temperature of hens exposed to the warm treatment; however plasma corticosterone levels remained unaffected. The laying rate was not affected, but experimental hens laid lighter eggs than the controls during the treatment. As expected, the maternal thermal environment affected yolk hormone contents. Eggs laid by the experimental hens showed significantly higher concentrations of yolk progesterone, testosterone, and estradiol. All chicks were raised under standard thermal conditions. The quality of hatchlings, growth, feeding behavior and emotional reactivity of chicks were analyzed. Offspring of experimental hens (C30 chicks) were lighter but obtained better morphological quality scores at hatching than the controls (C21 chicks). C30 chicks expressed lesser distress calls when exposed to a novel food. Unlike C21 chicks, C30 chicks expressed no preference for energetic food. CONCLUSION/SIGNIFICANCE: Our findings suggest that moderate heat challenge triggers maternal effects and modulate the developmental trajectory of offspring in a way that may be adaptive. This suggests that the impact of heat challenges on captive or wild populations might have a cross-generation effect.


Subject(s)
Chickens/physiology , Egg Yolk/metabolism , Feeding Behavior/physiology , Gonadal Steroid Hormones/metabolism , Animals , Chick Embryo , Chickens/metabolism , Cohort Effect , Corticosterone/metabolism , Emotions/physiology , Female , Hot Temperature , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...