Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Pathol ; 33(1): e13115, 2023 01.
Article in English | MEDLINE | ID: mdl-36058615

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) are pivotal players in the synaptic transmission and synaptic plasticity underlying learning and memory. Accordingly, dysfunction of NMDARs has been implicated in the pathophysiology of Alzheimer disease (AD). Here, we used histoblot and sodium dodecylsulphate-digested freeze-fracture replica labelling (SDS-FRL) techniques to investigate the expression and subcellular localisation of GluN1, the obligatory subunit of NMDARs, in the hippocampus of P301S mice. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered at 3 months. Using the SDS-FRL technique, excitatory synapses and extrasynaptic sites on spines of pyramidal cells and interneuron dendrites were analysed throughout all dendritic layers in the CA1 field. Our ultrastructural approach revealed a high density of GluN1 in synaptic sites and a substantially lower density at extrasynaptic sites. Labelling density for GluN1 in excitatory synapses established on spines was significantly reduced in P301S mice, compared with age-matched wild-type mice, in the stratum oriens (so), stratum radiatum (sr) and stratum lacunosum-moleculare (slm). Density for synaptic GluN1 on interneuron dendrites was significantly reduced in P301S mice in the so and sr but unaltered in the slm. Labelling density for GluN1 at extrasynaptic sites showed no significant differences in pyramidal cells, and only increased density in the interneuron dendrites of the sr. This differential alteration of synaptic versus extrasynaptic NMDARs supports the notion that the progressive accumulation of phospho-tau is associated with changes in NMDARs, in the absence of amyloid-ß pathology, and may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit.


Subject(s)
Hippocampus , Receptors, N-Methyl-D-Aspartate , Mice , Animals , Mice, Transgenic , Hippocampus/metabolism , CA1 Region, Hippocampal , Dendrites , Synapses/metabolism
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362317

ABSTRACT

Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies, but how pathological tau accumulation alters the glutamate receptor dynamics driving synaptic dysfunction is unclear. Here, we determined the impact of tau pathology on AMPAR expression, density, and subcellular distribution in the hippocampus of P301S mice using immunoblot, histoblot, and quantitative SDS-digested freeze-fracture replica labeling (SDS-FRL). Histoblot and immunoblot showed differential regulation of GluA1 and GluA2 in the hippocampus of P301S mice. The GluA2 subunit was downregulated in the hippocampus at 3 months while both GluA1 and GluA2 subunits were downregulated at 10 months. However, the total amount of GluA1-4 was similar in P301S mice and in age-matched wild-type mice. Using quantitative SDS-FRL, we unraveled the molecular organization of GluA1-4 in various synaptic connections at a high spatial resolution on pyramidal cell spines and interneuron dendrites in the CA1 field of the hippocampus in 10-month-old P301S mice. The labeling density for GluA1-4 in the excitatory synapses established on spines was significantly reduced in P301S mice, compared to age-matched wild-type mice, in the strata radiatum and lacunosum-moleculare but unaltered in the stratum oriens. The density of synaptic GluA1-4 established on interneuron dendrites was significantly reduced in P301S mice in the three strata. The labeling density for GluA1-4 at extrasynaptic sites was significantly reduced in several postsynaptic compartments of CA1 pyramidal cells and interneurons in the three dendritic layers in P301S mice. Our data demonstrate that the progressive accumulation of phospho-tau is associated with alteration of AMPARs on the surface of different neuron types, including synaptic and extrasynaptic membranes, leading to a decline in the trafficking and synaptic transmission, thereby likely contributing to the pathological events taking place in AD.


Subject(s)
Hippocampus , Receptors, AMPA , Mice , Animals , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Mice, Transgenic , Hippocampus/metabolism , Synapses/metabolism , Dendrites/metabolism
3.
Neurobiol Dis ; 165: 105632, 2022 04.
Article in English | MEDLINE | ID: mdl-35065251

ABSTRACT

Tauopathies are a family of neurodegenerative diseases characterized by the presence of abnormally hyperphosphorylated Tau protein. Several studies have proposed that increased extracellular Tau (eTau) leads to the spread of cerebral tauopathy. However, the molecular mechanisms underlying eTau-induced neurotoxicity remain unclear. Previous in vitro studies reported that the ecto-enzyme tissue-nonspecific alkaline phosphatase (TNAP) dephosphorylate eTau at different sites increasing its neurotoxicity. Here, we confirm TNAP protein upregulation in the brains of Alzheimer's patients and found a similar TNAP increase in Pick's disease patients and P301S mice, a well-characterized mouse model of tauopathies. Interestingly, the conditional overexpression of TNAP causes intracellular Tau hyperphosphorylation and aggregation in cells neighbouring those overexpressing the ectoenzyme. Conversely, the genetic disruption of TNAP reduced the dephosphorylation of eTau and decreased neuronal hyperactivity, brain atrophy, and hippocampal neuronal death in P301S mice. TNAP haploinsufficiency in P301S mice prevents the decreased anxiety-like behaviour, motor deficiency, and increased memory capacity and life expectancy. Similar results were observed by the in vivo pharmacological blunting of TNAP activity. This study provides the first in vivo evidence demonstrating that raised TNAP activity is critical for Tau-induced neurotoxicity and suggest that TNAP blockade may be a novel and efficient therapy to treat tauopathies.


Subject(s)
Alkaline Phosphatase , Tauopathies , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/therapeutic use , Animals , Brain/metabolism , Disease Models, Animal , Humans , Life Expectancy , Mice , Mice, Transgenic , Tauopathies/metabolism , Up-Regulation , tau Proteins/metabolism
4.
Vaccines (Basel) ; 8(1)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183198

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive memory loss and cognitive decline that has been associated with an accumulation in the brain of intracellular neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau protein, and extracellular senile plaques formed by ß-amyloid peptides. Currently, there is no cure for AD and after the failure of anti ß-amyloid therapies, active and passive tau immunotherapeutic approaches have been developed in order to prevent, reduce or ideally reverse the disease. Vaccination is one of the most effective approaches to prevent diseases and poxviruses, particularly modified vaccinia virus Ankara (MVA), are one of the most promising viral vectors used as vaccines against several human diseases. Thus, we present here the generation and characterization of the first MVA vectors expressing human tau genes; the full-length 4R2N tau protein or a 3RC tau fragment containing 3 tubulin-binding motifs and the C-terminal region (termed MVA-Tau4R2N and MVA-Tau3RC, respectively). Both MVA-Tau recombinant viruses efficiently expressed the human tau 4R2N or 3RC proteins in cultured cells, being detected in the cytoplasm of infected cells and co-localized with tubulin. These MVA-Tau vaccines impacted the innate immune responses with a differential recruitment of innate immune cells to the peritoneal cavity of infected mice. However, no tau-specific T cell or humoral immune responses were detected in vaccinated mice. Immunization of transgenic P301S mice, a mouse model for tauopathies, with a DNA-Tau prime/MVA-Tau boost approach showed no significant differences in the hyperphosphorylation of tau, motor capacity and survival rate, when compared to non-vaccinated mice. These findings showed that a well-established and potent protocol of T and B cell activation based on DNA/MVA prime/boost regimens using DNA and MVA vectors expressing tau full-length 4R2N or 3RC proteins is not sufficient to trigger tau-specific T and B cell immune responses and to induce a protective effect against tauopathy in this P301S murine model. In the pursuit of AD vaccines, our results highlight the need for novel optimized tau immunogens and additional modes of presentation of tau protein to the immune system.

5.
Front Aging Neurosci ; 12: 11, 2020.
Article in English | MEDLINE | ID: mdl-32063841

ABSTRACT

Human tauopathies, such as Alzheimer's disease (AD), have been widely studied in transgenic mice overexpressing human tau in the brain. The longest brain isoforms of Tau in mice and humans show 89% amino acid identity; however, the expression of the isoforms of this protein in the adult brain of the two species differs. Tau 3R isoforms are not present in adult mice. In contrast, the adult human brain contains Tau 3R and also Tau 4R isoforms. In addition, the N-terminal sequence of Tau protein in mice and humans differs, a Tau peptide (residues 17-28) being present in the latter but absent in the former. Here we review the main published data on this N-terminal sequence that suggests that human and mouse Tau proteins interact with different endogenous proteins and also show distinct secretion patterns.

6.
Neurosci Lett ; 698: 204-208, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30677432

ABSTRACT

It is well known that transgenic mice overexpressing human tau protein with P301S mutation driven by the mouse prion protein promoter show clasping and limb retraction, hunched back and paralysis, followed by inability to feed that results in death around 12 months of age. To understand these motor deficits, we have carried out rotarod tests on PS19 line and demonstrated how they worsened during aging. Then, we have analyzed if these phenotypic characteristics correlate with sciatic nerve degeneration. We first demonstrated by western blot and immunohistochemistry that the sciatic nerve expresses the transgenic tau protein; then, electron microscopy studies showed alterations in myelin, mainly a detachment of myelin lamellae at Schmidt-Lanterman clefts. Similar motor deficits and myelin alterations have been previously reported in tau knockout and overexpressing transgenic mice; taking into account that PS19 model is widely used to study tauopathies, we suggest that analyzing the expression of transgenic tau protein and myelin abnormalities in the sciatic nerve should be considered when studying some features as motor performance or survival.


Subject(s)
Hippocampus/metabolism , Peripheral Nervous System Agents/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Disease Models, Animal , Mice, Transgenic , Mutation/genetics , Myelin Sheath/metabolism , Tauopathies/genetics
7.
Front Mol Neurosci ; 11: 442, 2018.
Article in English | MEDLINE | ID: mdl-30618601

ABSTRACT

Prolonged seizures (status epilepticus, SE) may drive hippocampal dysfunction and epileptogenesis, at least partly, through an elevation in neurogenesis, dysregulation of migration and aberrant dendritic arborization of newly-formed neurons. MicroRNA-22 was recently found to protect against the development of epileptic foci, but the mechanisms remain incompletely understood. Here, we investigated the contribution of microRNA-22 to SE-induced aberrant adult neurogenesis. SE was induced by intraamygdala microinjection of kainic acid (KA) to model unilateral hippocampal neuropathology in mice. MicroRNA-22 expression was suppressed using specific oligonucleotide inhibitors (antagomir-22) and newly-formed neurons were visualized using the thymidine analog iodo-deoxyuridine (IdU) and a green fluorescent protein (GFP)-expressing retrovirus to visualize the dendritic tree and synaptic spines. Using this approach, we quantified differences in the rate of neurogenesis and migration, the structure of the apical dendritic tree and density and morphology of dendritic spines in newly-formed neurons.SE resulted in an increased rate of hippocampal neurogenesis, including within the undamaged contralateral dentate gyrus (DG). Newly-formed neurons underwent aberrant migration, both within the granule cell layer and into ectopic sites. Inhibition of microRNA-22 exacerbated these changes. The dendritic diameter and the density and average volume of dendritic spines were unaffected by SE, but these parameters were all elevated in mice in which microRNA-22 was suppressed. MicroRNA-22 inhibition also reduced the length and complexity of the dendritic tree, independently of SE. These data indicate that microRNA-22 is an important regulator of morphogenesis of newly-formed neurons in adults and plays a role in supressing aberrant neurogenesis associated with SE.

8.
J Alzheimers Dis ; 60(2): 651-661, 2017.
Article in English | MEDLINE | ID: mdl-28922155

ABSTRACT

The Golgi apparatus (GA) is a highly dynamic organelle involved in the processing and sorting of cellular proteins. In Alzheimer's disease (AD), it has been shown to decrease in size and become fragmented in neocortical and hippocampal neuronal subpopulations. This fragmentation and decrease in size of the GA in AD has been related to the accumulation of hyperphosphorylated tau. However, the involvement of other pathological factors associated with the course of the disease, such as the extracellular accumulation of amyloid-ß (Aß) aggregates, cannot be ruled out, since both pathologies are present in AD patients. Here we use the P301S tauopathy mouse model to examine possible alterations of the GA in neurons that overexpress human tau (P301S mutated gene) in neocortical and hippocampal neurons, using double immunofluorescence techniques and confocal microscopy. Quantitative analysis revealed that neurofibrillary tangle (NFT)-bearing neurons had important morphological alterations and reductions in the surface area and volume of the GA compared with NFT-free neurons. Since in this mouse model there are no Aß aggregates typical of AD, the present findings support the idea that the progressive accumulation of phospho-tau is associated with structural alterations of the GA, and that these changes may occur in the absence of Aß pathology.


Subject(s)
Cerebral Cortex/pathology , Pyramidal Cells/ultrastructure , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism , Animals , Carrier Proteins/metabolism , Disease Models, Animal , Golgi Apparatus , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Neurofibrillary Tangles/pathology , Phosphopyruvate Hydratase/metabolism , Phosphorylation/genetics , Proline/genetics , Pyramidal Cells/pathology , Receptors, Fibroblast Growth Factor/metabolism , Serine/genetics , Sialoglycoproteins/metabolism , Tauopathies/genetics
9.
Brain Pathol ; 27(3): 314-322, 2017 05.
Article in English | MEDLINE | ID: mdl-27338164

ABSTRACT

Increased incidence of neuronal nuclear indentations is a well-known feature of the striatum of Huntington's disease (HD) brains and, in Alzheimer's disease (AD), neuronal nuclear indentations have recently been reported to correlate with neurotoxicity caused by improper cytoskeletal/nucleoskeletal coupling. Initial detection of rod-shaped tau immunostaining in nuclei of cortical and striatal neurons of HD brains and in hippocampal neurons of early Braak stage AD led us to coin the term "tau nuclear rods (TNRs)." Although TNRs traverse nuclear space, they in fact occupy narrow cytoplasmic extensions that fill indentations of the nuclear envelope and we will here refer to this histological hallmark as Tau-immunopositive nuclear indentations (TNIs). We reasoned that TNI formation is likely secondary to tau alterations as TNI detection in HD correlates with an increase in total tau, particularly of the isoforms with four tubulin binding repeats (4R-tau). Here we analyze transgenic mice that overexpress human 4R-tau with a frontotemporal lobar degeneration-tau point mutation (P301S mice) to explore whether tau alteration is sufficient for TNI formation. Immunohistochemistry with various tau antibodies, immunoelectron microscopy and double tau-immunofluorescence/DAPI-nuclear counterstaining confirmed that excess 4R-tau in P301S mice is sufficient for the detection of abundant TNIs that fill nuclear indentations. Interestingly, this does not correlate with an increase in the number of nuclear indentations, thus suggesting that excess total tau or an isoform imbalance in favor of 4R-tau facilitates tau detection inside preexisting nuclear indentations but does not induce formation of the latter. In summary, here we demonstrate that tau alteration is sufficient for TNI detection and our results suggest that the neuropathological finding of TNIs becomes a possible indicator of increased total tau and/or increased 4R/3R-tau ratio in the affected neurons apart from being an efficient way to monitor pathology-associated nuclear indentations.


Subject(s)
Cell Nucleus/metabolism , Cell Nucleus/pathology , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/genetics , tau Proteins/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Frontotemporal Lobar Degeneration/genetics , Hippocampus/metabolism , Hippocampus/pathology , Humans , Immunohistochemistry , Mice, Transgenic , Microscopy, Confocal , Microscopy, Immunoelectron , Mutation , Neurons/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...