Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Behav Immun ; 119: 665-680, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579936

ABSTRACT

Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.

2.
Brain Behav Immun ; 115: 458-469, 2024 01.
Article in English | MEDLINE | ID: mdl-37924959

ABSTRACT

The gut microbiome consists of trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea, has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea: L. intestinalis and L. murinus. Using this microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and provide novel methods to study potential therapies to treat mood disorders.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus , Probiotics , Resilience, Psychological , Animals , Mice , Gastrointestinal Tract/microbiology , Homeostasis , Probiotics/pharmacology
3.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214985

ABSTRACT

The gut microbiome consists of the trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea , has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, for the first time, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea . Using this novel microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and give novel methods to study potential therapies developed to treat mood disorders.

4.
PLoS Biol ; 21(2): e3002000, 2023 02.
Article in English | MEDLINE | ID: mdl-36787309

ABSTRACT

Multiple sclerosis (MS) is a T cell-driven autoimmune disease that attacks the myelin of the central nervous system (CNS) and currently has no cure. MS etiology is linked to both the gut flora and external environmental factors but this connection is not well understood. One immune system regulator responsive to nonpathogenic external stimuli is the aryl hydrocarbon receptor (AHR). The AHR, which binds diverse molecules present in the environment in barrier tissues, is a therapeutic target for MS. However, AHR's precise function in T lymphocytes, the orchestrators of MS, has not been described. Here, we show that in a mouse model of MS, T cell-specific Ahr knockout leads to recovery driven by a decrease in T cell fitness. At the mechanistic level, we demonstrate that the absence of AHR changes the gut microenvironment composition to generate metabolites that impact T cell viability, such as bile salts and short chain fatty acids. Our study demonstrates a newly emerging role for AHR in mediating the interdependence between T lymphocytes and the microbiota, while simultaneously identifying new potential molecular targets for the treatment of MS and other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Mice , Animals , Autoimmunity , T-Lymphocytes , Neuroinflammatory Diseases , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
5.
Sci Rep ; 12(1): 12921, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902669

ABSTRACT

Oligodendrocyte progenitor cells (OPCs) account for approximately 5% of the adult brain and have been historically studied for their role in myelination. In the adult brain, OPCs maintain their proliferative capacity and ability to differentiate into oligodendrocytes throughout adulthood, even though relatively few mature oligodendrocytes are produced post-developmental myelination. Recent work has begun to demonstrate that OPCs likely perform multiple functions in both homeostasis and disease and can significantly impact behavioral phenotypes such as food intake and depressive symptoms. However, the exact mechanisms through which OPCs might influence brain function remain unclear. The first step in further exploration of OPC function is to profile the transcriptional repertoire and assess the heterogeneity of adult OPCs. In this work, we demonstrate that adult OPCs are transcriptionally diverse and separate into two distinct populations in the homeostatic brain. These two groups show distinct transcriptional signatures and enrichment of biological processes unique to individual OPC populations. We have validated these OPC populations using multiple methods, including multiplex RNA in situ hybridization and RNA flow cytometry. This study provides an important resource that profiles the transcriptome of adult OPCs and will provide a toolbox for further investigation into novel OPC functions.


Subject(s)
Adult Stem Cells , Oligodendrocyte Precursor Cells , Animals , Brain , Cell Differentiation/genetics , Mice , Oligodendroglia , RNA
6.
Sci Rep ; 12(1): 8594, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35597802

ABSTRACT

Current treatments for major depressive disorder are limited to neuropharmacological approaches and are ineffective for large numbers of patients. Recently, alternative means have been explored to understand the etiology of depression. Specifically, changes in the microbiome and immune system have been observed in both clinical settings and in mouse models. As such, microbial supplements and probiotics have become a target for potential therapeutics. A current hypothesis for the mechanism of action of these supplements is via the aryl hydrocarbon receptor's (Ahr) modulation of the T helper 17 cell (Th17) and T regulatory cell axis. As inflammatory RORγt + CD4 + Th17 T cells and their primary cytokine IL-17 have been implicated in the development of stress-induced depression, the connection between stress, the Ahr, Th17s and depression remains critical to understanding mood disorders. Here, we utilize genetic knockouts to examine the role of the microbial sensor Ahr in the development of stressinduced despair behavior. We observe an Ahr-independent increase in gut-associated Th17s in stressed mice, indicating that the Ahr is not responsible for this communication. Further, we utilized a CD4-specific RAR Related Orphan Receptor C (Rorc) knockout line to disrupt the production of Th17s. Mice lacking Rorc-produced IL-17 did not show any differences in behavior before or after stress when compared to controls. Finally, we utilize an unsupervised machine learning system to examine minute differences in behavior that could not be observed by traditional behavioral assays. Our data demonstrate that neither CD4 specific Ahr nor Rorc are necessary for the development of stress-induced anxiety- or depressive-like behaviors. These data suggest that research approaches should focus on other sources or sites of IL-17 production in stress-induced depression.


Subject(s)
Depressive Disorder, Major , Nuclear Receptor Subfamily 1, Group F, Member 3 , Animals , CD4-Positive T-Lymphocytes , Depressive Disorder, Major/metabolism , Humans , Interleukin-17/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Th17 Cells
7.
Transplantation ; 101(11): 2682-2690, 2017 11.
Article in English | MEDLINE | ID: mdl-28574903

ABSTRACT

Renal transplantation has become the preferred treatment for end stage kidney failure. Although short-term graft survival has significantly improved as advances in immunosuppression have occurred, long-term patient and graft survival have not. Approximately only 50% of renal transplant recipients are alive at 10 years due to the toxicities of immunosuppression and alloimmunity. Emerging research on cell-based therapies is opening a new door for patients to receive the organs they need without sacrificing quality of life and longevity because of drug-based immunosuppression. Research has focused on inducing tolerance, a state in which the body accepts the transplant and graft function is stable. Cell-based therapies to facilitate chimerism and achieve tolerance in major histocompatibility disparate recipients have been developed in mouse, swine, canine, and nonhuman primate models. These findings are now being translated into the clinic in several trials currently underway. Protocols that use a combination of traditional therapeutic agents paired with cell populations including hematopoietic stem cells, regulatory T cells, and facilitating cells are being conducted with the objective to harness the donor immune system to protect the transplanted tissue. The benefits and feasibility of the clinical application of cell-based therapy has been demonstrated, and promising results have been achieved. Here we discuss the preclinical work that has led to the clinical application of the various approaches and a summary of the most current clinical data from groups throughout the world.


Subject(s)
Graft Rejection/prevention & control , Graft Survival , Hematopoietic Stem Cell Transplantation , Kidney Transplantation , Transplantation Tolerance , Animals , Graft Rejection/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Histocompatibility , Humans , Isoantibodies/immunology , Kidney Transplantation/adverse effects , Models, Animal , Species Specificity , Time Factors , Translational Research, Biomedical , Transplantation Chimera/immunology , Treatment Outcome
8.
Behav Processes ; 126: 1-11, 2016 May.
Article in English | MEDLINE | ID: mdl-26910174

ABSTRACT

Ability to recognize and differentiate between predators and non-predators is a crucial component of successful anti-predator behavior. While there is evidence that both genetic and experiential mechanisms mediate anti-predator behaviors in various animal species, it is unknown to what extent each of these two mechanisms are utilized by the green monkey (Chlorocebus sabaeus). Green monkeys on the West Indies island of Barbados offer a unique opportunity to investigate the underpinnings of anti-predator behaviors in a species that has been isolated from ancestral predators for over 350 years. In the first experiment, monkeys in two free-ranging troops were presented with photographs of an ancestral predator (leopard, Panthera pardus) and a non-predator (African Buffalo, Syncerus caffer). Relative to non-predator stimuli, images of a leopard elicited less approach, more alarm calls, and more escape responses. Subsequent experiments were conducted to determine whether the monkeys were responding to a leopard-specific feature (spotted fur) or a general predator feature (forward facing eyes). The monkeys showed similar approach to images of an unfamiliar non-predator regardless of whether the image had forward facing predator eyes or side facing non-predator eyes. However, once near the images, the monkeys were less likely to reach for peanuts near the predator eyes than the non-predator eyes. The monkeys avoided an image of spotted leopard fur but approached the same image of fur when the dark spots had been removed. Taken together, the results suggest that green monkey anti-predator behavior is at least partially mediated by genetic factors.


Subject(s)
Chlorocebus aethiops/psychology , Fear/psychology , Instinct , Animals , Barbados , Behavior, Animal , Female , Male , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...