Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36770575

ABSTRACT

We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.

2.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34497277

ABSTRACT

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

3.
J Am Chem Soc ; 143(9): 3300-3305, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33651594

ABSTRACT

We report the synthesis of colloidal EuS, La2S3, and LaS2 nanocrystals between 150 and 255 °C using rare-earth iodides in oleylamine. The sulfur source dictates phase selection between La2S3 and LaS2, which are stabilized for the first time as colloidal nanocrystals. The indirect bandgap absorption of LaS2 shifts from 635 nm for nanoellipsoids to 365 nm for square-based nanoplates. Er3+ photoluminescence in La2S3:Er3+ (10%) is sensitized by the semiconducting host in the 390-450 nm range. The synthetic route yields tunable compositions of rare-earth sulfide nanocrystals. Interaction of light with these novel semiconducting nanostructures hosting rare-earth emitters should be attractive for applications that require broadband sensitization of RE emitters.

4.
Chem Commun (Camb) ; 56(23): 3429-3432, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32100801

ABSTRACT

Eu3+-doped sub-10 nm LaOCl nanocrystals with 43% photoluminescence quantum yield were prepared by solvothermal synthesis from hydrated rare-earth chlorides. As-obtained nanocrystals are nearly spherical, monodisperse and stable as colloidal dispersions. These combined features should intensify the interest for nanocrystalline rare-earth oxyhalides and their optical properties.

5.
Nat Commun ; 10(1): 327, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659185

ABSTRACT

Octahedral molecular sieves (OMS) are built of transition metal-oxygen octahedra that delimit sub-nanoscale cavities. Compared to other microporous solids, OMS exhibit larger versatility in properties, provided by various redox states and magnetic behaviors of transition metals. Hence, OMS offer opportunities in electrochemical energy harnessing devices, including batteries, electrochemical capacitors and electrochromic systems, provided two conditions are met: fast exchange of ions in the micropores and stability upon exchange. Here we unveil a novel OMS hexagonal polymorph of tungsten oxide called h'-WO3, built of (WO6)6 tunnel cavities. h'-WO3 is prepared by a one-step soft chemistry aqueous route leading to the hydrogen bronze h'-H0.07WO3. Gentle heating results in h'-WO3 with framework retention. The material exhibits an unusual combination of 1-dimensional crystal structure and 2-dimensional nanostructure that enhances and fastens proton (de)insertion for stable electrochromic devices. This discovery paves the way to a new family of mixed valence functional materials with tunable behaviors.

6.
ACS Appl Mater Interfaces ; 10(7): 6415-6423, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29359559

ABSTRACT

In/ZnO bulk compounds have been synthesized using a simple solid-state process. In this study, both the structural features and thermoelectric properties of the Zn1-xInxO series with ultralow indium content (0 ≤ x ≤ 0.02) have been studied. High-angle annular dark-field scanning transmission electron microscopy analyses highlight that indium has the ability to create multiple basal plane and pyramidal defects that produce ZnO domains with inverted polarity starting from dopant concentrations as low as 0.25 atom %. Interestingly, the formation of parallel inversion boundaries consisting of InO6 octahedra in the ZnO4 tetrahedra matrix is responsible for phonon scattering while increasing electrical conductivity, thereby enhancing the thermoelectric properties. This effect of multiple extended two-dimensional defects on the thermoelectric properties of ZnO is reported for the first time with such low indium doping. On the chemistry side, the present results point toward a lack of In solubility in the ZnO structure. Moreover, this study is a step forward to the synthesis of other thermoelectric compounds where dopant-induced planar defects in bulk transition metal compounds have the potential to enhance both phonon scattering and electronic conductivity.

7.
Int J Occup Saf Ergon ; 23(2): 229-239, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27384244

ABSTRACT

The efficiency of a working coverall combined with personal protective equipment to protect operators against dermal exposure to plant protection products under field conditions was studied. Operators wore a non-certified water-repellent finish polyester/cotton coverall plus a certified gown during the mixing/loading and the cleaning phases. Insecticide foliar application to a vineyard was selected as the exposure scenario. The overall dermal residue levels measured in this study were in the range of data recently collected in Europe. The water-repellent finish working coverall reduced body exposure by a factor of approximately 95%. Wearing a Category III Type 3 partial body gown during mixing/loading and cleaning of the application equipment led to a further protective effect of 98.7%. The combination of a water-repellent finish working coverall and partial body protection during specific tasks provided satisfactory levels of protection and can be considered as suitable protection for the conditions of use studied.


Subject(s)
Occupational Exposure/prevention & control , Protective Clothing/standards , Skin Absorption , Farms , France , Humans , Insecticides , Male , Occupational Exposure/analysis , Personal Protective Equipment/standards , Pesticides
8.
Inorg Chem ; 55(21): 11502-11512, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27731982

ABSTRACT

An aqueous synthetic route at 95 °C is developed to reach selectively three scarcely reported vanadium oxyhydroxides. Häggite V2O3(OH)2, Duttonite VO(OH)2, and Gain's hydrate V2O4(H2O)2 are obtained as nanowires, nanorods, and nanoribbons, with sizes 1 order of magnitude smaller than previously reported. X-ray absorption spectroscopy provides evidence that vanadium in these phases is V+IV. Combined with FTIR, XRD, and electron microscopy, it yields the first insights into formation mechanisms, especially for Häggite and Gain's hydrate. This study opens the way for further investigations of the properties of novel V+IV (oxyhydr)oxides nanostructures.

9.
Inorg Chem ; 46(14): 5456-8, 2007 Jul 09.
Article in English | MEDLINE | ID: mdl-17550245

ABSTRACT

The discrimination between atomic species in light-element materials is a challenging question. An archetypal example is the resolution of the Al/Si ordering in aluminosilicates. Only an average long-range order can be deduced from powder X-ray or neutron diffraction, while magic-angle-spinning NMR provides an accurate picture of the short-range order. The long- and short-range orders thus obtained usually differ, hence raising the question of whether the difference between local and extended orders is intrinsic or caused by the difficulty of obtaining an accurate picture of the long-range order from diffraction techniques. In this communication we resolve this question for the monoclinic phases of BaAl2Si2O8 and SrAl2Si2O8 on the basis of 27Al NMR measurements and ab initio simulation of electric field gradient. Although the long- and short-range orders deduced from our XRD and NMR experiments differ, they become similar when the XRD atomic positions are optimized by ab initio electronic structure calculations.

10.
Crit Rev Toxicol ; 36(1): 37-68, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16708694

ABSTRACT

A proposal has been developed by the Agricultural Chemical Safety Assessment (ACSA) Technical Committee of the ILSI Health and Environmental Sciences Institute (HESI) for an improved approach to assessing the safety of crop protection chemicals. The goal is to ensure that studies are scientifically appropriate and necessary without being redundant, and that tests emphasize toxicological endpoints and exposure durations that are relevant for risk assessment. The ACSA Systemic Toxicity Task Force proposes an approach to systemic toxicity testing as one part of the overall assessment of a compound's potential to cause adverse effects on health. The approach is designed to provide more relevant data for deriving reference doses for shorter time periods of human exposure, and includes fewer studies for deriving longer term reference doses-that is, neither a 12-month dog study nor a mouse carcinogenicity study is recommended. All available data, including toxicokinetics and metabolism data and life stages information, are taken into account. The proposed tiered testing approach has the potential to provide new risk assessment information for shorter human exposure durations while reducing the number of animals used and without compromising the sensitivity of the determination of longer term reference doses.


Subject(s)
Agrochemicals/toxicity , Safety Management , Database Management Systems , Environmental Exposure , Humans , Risk Assessment , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...