Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798547

ABSTRACT

BACKGROUND: There is growing evidence that pathogenic mutations do not fully explain hypertrophic (HCM) or dilated (DCM) cardiomyopathy phenotypes. We hypothesized that if a patient's genetic background was influencing cardiomyopathy this should be detectable as signatures in gene expression. We built a cardiomyopathy biobank resource for interrogating personalized genotype phenotype relationships in human cell lines. METHODS: We recruited 308 diseased and control patients for our cardiomyopathy stem cell biobank. We successfully reprogrammed PBMCs (peripheral blood mononuclear cells) into induced pluripotent stem cells (iPSCs) for 300 donors. These iPSCs underwent whole genome sequencing and were differentiated into cardiomyocytes for RNA-seq. In addition to annotating pathogenic variants, mutation burden in a panel of cardiomyopathy genes was assessed for correlation with echocardiogram measurements. Line-specific co-expression networks were inferred to evaluate transcriptomic subtypes. Drug treatment targeted the sarcomere, either by activation with omecamtiv mecarbil or inhibition with mavacamten, to alter contractility. RESULTS: We generated an iPSC biobank from 300 donors, which included 101 individuals with HCM and 88 with DCM. Whole genome sequencing of 299 iPSC lines identified 78 unique pathogenic or likely pathogenic mutations in the diseased lines. Notably, only DCM lines lacking a known pathogenic or likely pathogenic mutation replicated a finding in the literature for greater nonsynonymous SNV mutation burden in 102 cardiomyopathy genes to correlate with lower left ventricular ejection fraction in DCM. We analyzed RNA-sequencing data from iPSC-derived cardiomyocytes for 102 donors. Inferred personalized co-expression networks revealed two transcriptional subtypes of HCM. The first subtype exhibited concerted activation of the co-expression network, with the degree of activation reflective of the disease severity of the donor. In contrast, the second HCM subtype and the entire DCM cohort exhibited partial activation of the respective disease network, with the strength of specific gene by gene relationships dependent on the iPSC-derived cardiomyocyte line. ADCY5 was the largest hubnode in both the HCM and DCM networks and partially corrected in response to drug treatment. CONCLUSIONS: We have a established a stem cell biobank for studying cardiomyopathy. Our analysis supports the hypothesis the genetic background influences pathologic gene expression programs and support a role for ADCY5 in cardiomyopathy.

2.
Mol Ther Nucleic Acids ; 35(2): 102174, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38584818

ABSTRACT

Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.

3.
medRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961166

ABSTRACT

Patients with mitochondrial disorders present with clinically diverse symptoms, largely driven by heterogeneous mutations in mitochondrial-encoded and nuclear-encoded mitochondrial genes. These mutations ultimately lead to complex biochemical disorders with a myriad of clinical manifestations, often accumulating during childhood on into adulthood, contributing to life-altering and sometimes fatal events. It is therefore important to diagnose and characterize the associated disorders for each mitochondrial mutation as early as possible since medical management might be able to improve the quality and longevity of life in mitochondrial disease patients. Here we identify a novel mitochondrial variant in a mitochondrial transfer RNA for histidine (mt-tRNA-his) [m.12148T>C], that is associated with the development of ocular, aural, neurological, renal, and muscular dysfunctions. We provide a detailed account of a family harboring this mutation, as well as the molecular underpinnings contributing to cellular and mitochondrial dysfunction. In conclusion, this investigation provides clinical, biochemical, and morphological evidence of the pathogenicity of m.12148T>C. We highlight the importance of multiple tissue testing and in vitro disease modeling in diagnosing mitochondrial disease.

4.
Prog Retin Eye Res ; 96: 101153, 2023 09.
Article in English | MEDLINE | ID: mdl-36503723

ABSTRACT

Optogenetics is defined as the combination of genetic and optical methods to induce or inhibit well-defined events in isolated cells, tissues, or animals. While optogenetics within ophthalmology has been primarily applied towards treating inherited retinal disease, there are a myriad of other applications that hold great promise for a variety of eye diseases including cellular regeneration, modulation of mitochondria and metabolism, regulation of intraocular pressure, and pain control. Supported by primary data from the authors' work with in vitro and in vivo applications, we introduce a novel approach to metabolic regulation, Opsins to Restore Cellular ATP (ORCA). We review the fundamental constructs for ophthalmic optogenetics, present current therapeutic approaches and clinical trials, and discuss the future of subcellular and signaling pathway applications for neuroprotection and vision restoration.


Subject(s)
Neuroprotection , Retinal Degeneration , Animals , Optogenetics , Retina/metabolism , Vision, Ocular , Retinal Degeneration/metabolism
5.
Cell Stem Cell ; 30(1): 86-95.e4, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36563695

ABSTRACT

Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitro model for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of in vitro arrhythmia predict actual clinical risk has been much debated. Here, we trained a convolutional neural network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia in people. The risk profile of the test drugs was similar across hiPSC-CMs derived from different healthy donors. In contrast, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high-risk drugs in the hiPSC-CMs. Thus, deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia.


Subject(s)
Deep Learning , Induced Pluripotent Stem Cells , Torsades de Pointes , Humans , Arrhythmias, Cardiac/chemically induced , Torsades de Pointes/chemically induced , Induced Pluripotent Stem Cells/physiology , Action Potentials , Myocytes, Cardiac/physiology
6.
Stem Cells Transl Med ; 11(10): 1040-1051, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36018047

ABSTRACT

The development of new cardioprotective approaches using in vivo models of ischemic heart disease remains challenging as differences in cardiac physiology, phenotype, and disease progression between humans and animals influence model validity and prognostic value. Furthermore, economical and ethical considerations have to be taken into account, especially when using large animal models with relevance for conducting preclinical studies. The development of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has opened new opportunities for in vitro studies on cardioprotective compounds. However, the immature cellular phenotype of iPSC-CMs remains a roadblock for disease modeling. Here, we show that metabolic maturation renders the susceptibility of iPSC-CMs to hypoxia further toward a clinically representative phenotype. iPSC-CMs cultured in a conventional medium did not show significant cell death after exposure to hypoxia. In contrast, metabolically matured (MM) iPSC-CMs showed inhibited mitochondrial respiration after exposure to hypoxia and increased cell death upon increased durations of hypoxia. Furthermore, we confirmed the applicability of MM iPSC-CMs for in vitro studies of hypoxic damage by validating the known cardioprotective effect of necroptosis inhibitor necrostatin-1. Our results provide important steps to improving and developing valid and predictive human in vitro models of ischemic heart disease.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Ischemia , Animals , Humans , Myocytes, Cardiac/metabolism , Cell Differentiation , Hypoxia/metabolism
7.
J Med Chem ; 65(16): 10898-10919, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35944901

ABSTRACT

Development of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL oncogene constitutes an effective approach for the treatment of chronic myeloid leukemia (CML) and/or acute lymphoblastic leukemia. However, currently available inhibitors are limited by drug resistance and toxicity. Ponatinib, a third-generation inhibitor, has demonstrated excellent efficacy against both wild type and mutant BCR-ABL kinase, including the "gatekeeper" T315I mutation that is resistant to all other currently available TKIs. However, it is one of the most cardiotoxic of the FDA-approved TKIs. Herein, we report the structure-guided design of a novel series of potent BCR-ABL inhibitors, particularly for the T315I mutation. Our drug design paradigm was coupled to iPSC-cardiomyocyte models. Systematic structure-activity relationship studies identified two compounds, 33a and 36a, that significantly inhibit the kinase activity of both native BCR-ABL and the T315I mutant. We have identified the most cardiac-safe TKIs reported to date, and they may be used to effectively treat CML patients with the T315I mutation.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Cell Line, Tumor , Fusion Proteins, bcr-abl , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
9.
Cancer Res ; 82(15): 2777-2791, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35763671

ABSTRACT

Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE: Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Pyridazines , Antineoplastic Agents/adverse effects , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/genetics , Humans , Imidazoles , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Protein Kinase Inhibitors/adverse effects , Pyridazines/pharmacology , Pyridazines/therapeutic use
10.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Article in English | MEDLINE | ID: mdl-35728000

ABSTRACT

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Subject(s)
Cardiomyopathy, Dilated , Molecular Targeted Therapy , Myocytes, Cardiac , Protein Kinase Inhibitors , Serine , Troponin T , Activating Transcription Factor 4/metabolism , Adenosine Triphosphate/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Carbazoles/pharmacology , Carbazoles/therapeutic use , Cardiomyopathy, Dilated/drug therapy , Cardiomyopathy, Dilated/genetics , Drug Evaluation, Preclinical/methods , Glucose/metabolism , Glycine/biosynthesis , Glycine/genetics , Humans , Imidazoles/pharmacology , Imidazoles/therapeutic use , Induced Pluripotent Stem Cells/physiology , Mutation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/enzymology , Phosphoglycerate Dehydrogenase/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Serine/antagonists & inhibitors , Serine/biosynthesis , Serine/genetics , Troponin T/genetics , Troponin T/metabolism
11.
Front Genet ; 13: 888025, 2022.
Article in English | MEDLINE | ID: mdl-35571054

ABSTRACT

There is considerable variability in the susceptibility and progression for COVID-19 and it appears to be strongly correlated with age, gender, ethnicity and pre-existing health conditions. However, to our knowledge, cohort studies of COVID-19 in clinically vulnerable groups are lacking. Host genetics has also emerged as a major risk factor for COVID-19, and variation in the ACE2 receptor, which facilitates entry of the SARS-CoV-2 virus into the cell, has become a major focus of attention. Thus, we interrogated an ethnically diverse cohort of National Health Service (NHS) patients in the United Kingdom (United Kingdom) to assess the association between variants in the ACE2 locus and COVID-19 risk. We analysed whole-genome sequencing (WGS) data of 1,837 cases who were tested positive for SARS-CoV-2, and 37,207 controls who were not tested, from the UK's 100,000 Genomes Project (100KGP) for the presence of ACE2 coding variants and extract expression quantitative trait loci (eQTLs). We identified a splice site variant (rs2285666) associated with increased ACE2 expression with an overrepresentation in SARS-CoV-2 positive patients relative to 100KGP controls (p = 0.015), and in hospitalised European patients relative to outpatients in intra-ethnic comparisons (p = 0.029). We also compared the prevalence of 288 eQTLs, of which 23 were enriched in SARS-CoV-2 positive patients. The eQTL rs12006793 had the largest effect size (d = 0.91), which decreases ACE2 expression and is more prevalent in controls, thus potentially reducing the risk of COVID-19. We identified three novel nonsynonymous variants predicted to alter ACE2 function, and showed that three variants (p.K26R, p. H378R, p. Y515N) alter receptor affinity for the viral Spike (S) protein. Variant p. N720D, more prevalent in the European population (p < 0.001), potentially increases viral entry by affecting the ACE2-TMPRSS2 complex. The spectrum of genetic variants in ACE2 may inform risk stratification of COVID-19 patients and could partially explain the differences in disease susceptibility and severity among different ethnic groups.

12.
Nat Rev Cardiol ; 19(11): 751-764, 2022 11.
Article in English | MEDLINE | ID: mdl-35606425

ABSTRACT

Drug repurposing is the use of a given therapeutic agent for indications other than that for which it was originally designed or intended. The concept is appealing because of potentially lower development costs and shorter timelines than are needed to produce a new drug. To date, drug repurposing for cardiovascular indications has been opportunistic and driven by knowledge of disease mechanisms or serendipitous observation rather than by systematic endeavours to match an existing drug to a new indication. Innovations in two areas of personalized medicine - computational approaches to associate drug effects with disease signatures and predictive model systems to screen drugs for disease-modifying activities - support efforts that together create an efficient pipeline to systematically repurpose drugs to treat cardiovascular disease. Furthermore, new experimental strategies that guide the medicinal chemistry re-engineering of drugs could improve repurposing efforts by tailoring a medicine to its new indication. In this Review, we summarize the historical approach to repurposing and discuss the technological advances that have created a new landscape of opportunities.


Subject(s)
Cardiovascular Diseases , Drug Repositioning , Cardiovascular Diseases/drug therapy , Humans , Precision Medicine
13.
Nat Rev Drug Discov ; 21(12): 899-914, 2022 12.
Article in English | MEDLINE | ID: mdl-35637317

ABSTRACT

Many drugs, or their antecedents, were discovered through observation of their effects on normal or disease physiology. For the past generation, this phenotypic drug discovery approach has been largely supplanted by the powerful but reductionist approach of modulating specific molecular targets of interest. Nevertheless, modern phenotypic drug discovery, which combines the original concept with modern tools and strategies, has re-emerged over the past decade to systematically pursue drug discovery based on therapeutic effects in realistic disease models. Here, we discuss recent successes with this approach, as well as consider ongoing challenges and approaches to address them. We also explore how innovation in this area may fuel the next generation of successful projects.


Subject(s)
Drug Discovery , Humans
14.
JACC CardioOncol ; 3(3): 428-440, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34604804

ABSTRACT

BACKGROUND: Anthracycline-induced cardiomyopathy (AIC) is a significant source of morbidity and mortality in cancer survivors. The role of mesenchymal stem cells (MSCs) in treating AIC was evaluated in the SENECA trial, a Phase 1 National Heart, Lung, and Blood Institute-sponsored study, but the mechanisms underpinning efficacy in human tissue need clarification. OBJECTIVES: The purpose of this study was to perform an in vitro clinical trial evaluating the efficacy and putative mechanisms of SENECA trial-specific MSCs in treating doxorubicin (DOX) injury, using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iCMs) generated from SENECA patients. METHODS: Patient-specific iCMs were injured with 1 µmol/L DOX for 24 hours, treated with extracellular vesicles (EVs) from MSCs by either coculture or direct incubation and then assessed for viability and markers of improved cellular physiology. MSC-derived EVs were separated into large extracellular vesicles (L-EVs) (>200 nm) and small EVs (<220nm) using a novel filtration system. RESULTS: iCMs cocultured with MSCs in a transwell system demonstrated improved iCM viability and attenuated apoptosis. L-EVs but not small EVs recapitulated this therapeutic effect. L-EVs were found to be enriched in mitochondria, which were shown to be taken up by iCMs. iCMs treated with L-EVs demonstrated improved contractility, reactive oxygen species production, ATP production, and mitochondrial biogenesis. Inhibiting L-EV mitochondrial function with 1-methyl-4-phenylpyridinium attenuated efficacy. CONCLUSIONS: L-EV-mediated mitochondrial transfer mitigates DOX injury in patient-specific iCMs. Although SENECA was not designed to test MSC efficacy, consistent tendencies toward a positive effect were observed across endpoints. Our results suggest a mechanism by which MSCs may improve cardiovascular performance in AIC independent of regeneration, which could inform future trial design evaluating the therapeutic potential of MSCs.

15.
Basic Res Cardiol ; 116(1): 58, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34648073

ABSTRACT

Cardiomyocyte Na+ and Ca2+ mishandling, upregulated Ca2+/calmodulin-dependent kinase II (CaMKII), and increased reactive oxygen species (ROS) are characteristics of various heart diseases, including heart failure (HF), long QT (LQT) syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). These changes may form a vicious cycle of positive feedback to promote cardiac dysfunction and arrhythmias. In HF rabbit cardiomyocytes investigated in this study, the inhibition of CaMKII, late Na+ current (INaL), and leaky ryanodine receptors (RyRs) all attenuated the prolongation and increased short-term variability (STV) of action potential duration (APD), but in age-matched controls these inhibitors had no or minimal effects. In control cardiomyocytes, we enhanced RyR leak (by low [caffeine] plus isoproterenol mimicking CPVT) which markedly increased STV and delayed afterdepolarizations (DADs). These proarrhythmic changes were significantly attenuated by both CaMKII inhibition and mitochondrial ROS scavenging, with a slight synergy with INaL inhibition. Inducing LQT by elevating INaL (by Anemone toxin II, ATX-II) caused markedly prolonged APD, increased STV, and early afterdepolarizations (EADs). Those proarrhythmic ATX-II effects were largely attenuated by mitochondrial ROS scavenging, and partially reduced by inhibition of CaMKII and pathological leaky RyRs using dantrolene. In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) bearing LQT3 mutation SCN5A N406K, dantrolene significantly attenuated cell arrhythmias and APD prolongation. Targeting critical components of the Na+-Ca2+-CaMKII-ROS-INaL arrhythmogenic vicious cycle may exhibit important on-target and also trans-target effects (e.g., INaL and RyR inhibition can alter INaL-mediated LQT3 effects). Incorporating this vicious cycle into therapeutic strategies provides novel integrated insight for treating cardiac arrhythmias and diseases.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Induced Pluripotent Stem Cells , Action Potentials , Animals , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Pregnancy , Rabbits , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel
17.
Transl Vis Sci Technol ; 10(8): 4, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34232272

ABSTRACT

Translational Relevance: Mitochondria are viable therapeutic targets for a broad spectrum of ocular diseases.


Subject(s)
Eye Diseases , Mitochondria , Eye Diseases/drug therapy , Humans
18.
Pharmacol Res Perspect ; 9(4): e00828, 2021 08.
Article in English | MEDLINE | ID: mdl-34327875

ABSTRACT

Prolongation of the cardiac action potential (AP) and early after depolarizations (EADs) are electrical anomalies of cardiomyocytes that can lead to lethal arrhythmias and are potential liabilities for existing drugs and drug candidates in development. For example, long QT syndrome-3 (LQTS3) is caused by mutations in the Nav 1.5 sodium channel that debilitate channel inactivation and cause arrhythmias. We tested the hypothesis that a useful drug (i.e., mexiletine) with potential liabilities (i.e., potassium channel inhibition and adverse reactions) could be re-engineered by dynamic medicinal chemistry to afford a new drug candidate with greater efficacy and less toxicity. Human cardiomyocytes were generated from LQTS3 patient-derived induced pluripotent stem cells (hIPSCs) and normal hIPSCs to determine beneficial (on-target) and detrimental effects (off-target) of mexiletine and synthetic analogs, respectively. The approach combined "drug discovery" and "hit to lead" refinement and showed that iterations of medicinal chemistry and physiological testing afforded optimized compound 22. Compared to mexiletine, compound 22 showed a 1.85-fold greater AUC and no detectable CNS toxicity at 100 mg/kg. In vitro hepatic metabolism studies showed that 22 was metabolized via cytochrome P-450, as previously shown, and by the flavin-containing monooxygenase (FMO). Deuterated-22 showed decreased metabolism and showed acceptable cardiovascular and physicochemical properties.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Mexiletine/analogs & derivatives , Mexiletine/pharmacokinetics , Myocytes, Cardiac/metabolism , Animals , Behavior, Animal/drug effects , Cells, Cultured , Female , Humans , Liver/metabolism , Long QT Syndrome , Male , Mexiletine/adverse effects , Mice, Inbred BALB C , Rats, Sprague-Dawley , Seizures/chemically induced
19.
J Hum Genet ; 66(11): 1127-1137, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34099864

ABSTRACT

MicroRNAs (miRNAs) regulate diverse cancer hallmarks through sequence-specific regulation of gene expression, so genetic variability in their seed sequences or target sites could be responsible for cancer initiation or progression. While several efforts have been made to predict the locations of single nucleotide variants (SNVs) at miRNA target sites and associate them with cancer risk and susceptibility, there have been few direct assessments of SNVs in both mature miRNAs and their target sites to assess their impact on miRNA function in cancers. Using genome-wide target capture of miRNAs and miRNA-binding sites followed by deep sequencing in prostate cancer cell lines, here we identified prostate cancer-specific SNVs in mature miRNAs and their target binding sites. SNV rs9860655 in the mature sequence of miR-570 was not present in benign prostate hyperplasia (BPH) tissue or cell lines but was detectable in clinical prostate cancer tissue samples and adjacent normal tissue. SLC45A3 (prostein), a putative oncogene target of miR-1178, was highly upregulated in PC3 cells harboring an miR-1178 seed sequence SNV. Finally, systematic assessment of losses and gains of miRNA targets through 3'UTR SNVs revealed SNV-associated changes in target oncogene and tumor suppressor gene expression that might be associated with prostate carcinogenesis. Further work is required to systematically assess the functional effects of miRNA SNVs.


Subject(s)
Carcinogenesis/genetics , MicroRNAs/genetics , Monosaccharide Transport Proteins/genetics , Prostatic Neoplasms/genetics , Binding Sites/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/pathology , RNA-Binding Proteins/genetics
20.
Eur Heart J ; 42(28): 2780-2792, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34104945

ABSTRACT

AIMS: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown. METHODS AND RESULTS: Here, we used the surface antigen CD172a as a specific marker of cardiomyocyte (CM)-derived EVs; the CM origin of CD172a+ EVs was supported by their content of cardiac-specific proteins and heart-enriched microRNAs. We found that patients with aortic stenosis, ischaemic heart disease, or cardiomyopathy had higher circulating CD172a+ cardiac EV counts than did healthy subjects. Cellular stress was a major determinant of EV release from CMs, with hypoxia increasing shedding in in vitro and in vivo experiments. At the functional level, EVs isolated from the supernatant of CMs derived from human-induced pluripotent stem cells and cultured in a hypoxic atmosphere elicited a positive inotropic response in unstressed CMs, an effect we found to be dependent on an increase in the number of EVs expressing ceramide on their surface. Of potential clinical relevance, aortic stenosis patients with the highest counts of circulating cardiac CD172a+ EVs had a more favourable prognosis for transcatheter aortic valve replacement than those with lower counts. CONCLUSION: We identified circulating CD172a+ EVs as cardiac derived, showing their release and function and providing evidence for their prognostic potential in aortic stenosis patients.


Subject(s)
Extracellular Vesicles , MicroRNAs , Myocardial Infarction , Humans , Hypoxia , Myocardium , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL
...