Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 10: 349, 2019.
Article in English | MEDLINE | ID: mdl-31057399

ABSTRACT

Angiogenesis is a crucial event for tumor progression and metastasis. It is the process through which new blood vessels are formed and has become a therapeutic target in many cancer therapies. However, current anti-angiogenic drugs such as Thalidomide still have detrimental teratogenic effects. This property could be caused by the presence of chiral carbons, intrinsic to such compounds. We synthesized four different phthalimide derivatives that lack chiral carbons in their chemical structure. We hypothesized that these achiral carbon compounds would retain similar levels of anti-angiogenic activity whilst reducing teratogenic effects. We tested for their anti-angiogenic functions using an in vitro 3D microfluidic assay with human endothelial cells. All four compounds caused a drastic inhibition of angiogenesis at lower effective concentrations compared to Thalidomide. Quantification of the blood vessel sprouting in each condition allowed us to classify compounds depending on their anti-angiogenic capabilities. The most effective identified compound (C4), was tested in vivo on a zebrafish embryo model. Blood vessel development was measured using number and lengths of the stalks visible in the fli1a:EGFP transgenic line. Potential teratogenic effects of C4 were monitored over zebrafish embryonic development. The in vivo results confirmed the increased potency of C4 compared to Thalidomide demonstrated by results in embryos exposed to concentrations as low as 0.02 µM. The teratogenic analysis further validated the advantages of using C4 over Thalidomide in zebrafish embryos. This study highlights how the use of in vitro 3D model can allow rapid screening and selection of new and safer drugs.

2.
Carbohydr Polym ; 207: 720-728, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30600058

ABSTRACT

The antibacterial activity of the S-unsubstituted- and S-benzyl-substituted-2-mercapto-benzothiazoles 1-4 has been evaluated after complexation with Methyl-ß-Cyclodextrin (Me-ß-CD) or incorporation in solid dispersions based on Pluronic® F-127 and compared with that of the pure compounds. This with the aim to gain further insights on the possible mechanism(s) involved in the CD-mediated enhancement of antimicrobial effectiveness, a promising methodology to overcome the microbial resistance issue. Together with Differential Scanning Calorimetry, FT-IR spectroscopy and X-ray Powder Diffraction investigations, a molecular modeling study focused on compounds 2 and 4 showed that the S-unsubstituted compound 2/Me-ß-CD complex should be more stable than S-benzyl-substituted 4/Me-ß-CD. Only for 1/Me-ß-CD or, particularly, 2/Me-ß-CD complexes, the antibacterial effectiveness was enhanced in the presence of selected bacterial strains. The results herein presented support the mechanisms focusing on the interactions of the bacterial membrane with CD complexes more than those focusing on the improvement of dissolution properties consequent to CD complexation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzothiazoles/pharmacology , beta-Cyclodextrins/chemistry , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Benzothiazoles/chemistry , Drug Compounding , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Models, Molecular , Poloxamer/chemistry , Solubility , Staphylococcus aureus/drug effects , Surface-Active Agents/chemistry
3.
Curr Med Chem ; 24(25): 2736-2744, 2017.
Article in English | MEDLINE | ID: mdl-28571559

ABSTRACT

Thalidomide is a drug with interesting therapeutic properties but also with severe side effects which require a careful and monitored use. Potential immunomodulatory, antiinflammatory, anti-angiogenic and sedative properties make thalidomide a good candidate for the treatment of several diseases such as multiple myeloma. Through an increase in the degradation of TNFα-mRNA, thalidomide reduces the production of TNFα by monocytes and macrophages stimulated by lipopolysaccharide or by T lymphocytes induced by mitogenic stimuli. The decreased level of TNFα alters the mechanisms of intracellular transduction by preventing the activation of NF-kB and by decreasing the synthesis of proteins, in particular IL-6, involved in cell proliferation, inflammation, angiogenesis and protection from apoptosis. Furthermore, thalidomide affects VEGF levels by down-regulating its expression. Nowadays, new safer and less toxic drugs, analogs of thalidomide, are emerging as beneficial for a more targeted treatment of multiple myeloma and several other diseases such as Crohn';s disease, rheumatoid arthritis, sarcoidosis, erythema nodosum leprosum, graft-versus-host disease.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Multiple Myeloma/blood supply , Multiple Myeloma/drug therapy , Neovascularization, Pathologic/drug therapy , Thalidomide/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Vascular Endothelial Growth Factors/antagonists & inhibitors , Angiogenesis Inhibitors/chemistry , Humans , Thalidomide/chemistry , Tumor Necrosis Factor-alpha/biosynthesis , Vascular Endothelial Growth Factors/biosynthesis
4.
Plant Foods Hum Nutr ; 71(1): 81-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26852311

ABSTRACT

Three different flavoring methods of olive oil were tested employing two different herbs, thyme and oregano. The traditional method consist in the infusion of herbs into the oil. A second scarcely diffused method is based on the addition of herbs to the crushed olives before the malaxation step during the extraction process. The third innovative method is the implementation of the ultrasound before the olive paste malaxation. The objective of the study is to verify the effect of the treatments on the quality of the product, assessed by means of the chemical characteristics, the phenol composition and the radical scavenging activity of the resulting oils. The less favorable method was the addition of herbs directly to the oil. A positive effect was achieved by the addition of herbs to the olive paste and other advantages were attained by the employment of ultrasound. These last two methods allow to produce oils "ready to sell", instead the infused oils need to be filtered. Moreover, the flavoring methods applied during the extraction process determine a significant increment of phenolic content and radical scavenging activity of olive oils. The increments were higher when oregano is used instead of thyme. Ultrasound inhibited the olive polyphenoloxidase, the endogenous enzyme responsible for olive oil phenol oxidation. This treatment of olive paste mixed with herbs before malaxation was revealed as the most favorable method due to the best efficiency, reduced time consumption and minor labor, enhancing the product quality of flavored olive oil.


Subject(s)
Flavoring Agents/chemistry , Food Handling/methods , Olea/chemistry , Olive Oil/chemistry , Origanum/chemistry , Thymus Plant/chemistry , Catechol Oxidase/metabolism , Free Radical Scavengers/analysis , Free Radical Scavengers/chemistry , Humans , Liquid-Liquid Extraction , Ointments/chemistry , Olea/enzymology , Olive Oil/isolation & purification , Olive Oil/standards , Oxidation-Reduction , Phenols/analysis , Phenols/chemistry , Plant Leaves/chemistry , Plant Proteins/metabolism , Taste
SELECTION OF CITATIONS
SEARCH DETAIL
...